

Date: 2012-05-28 Page 1 of 18

No. : HM167589

Applicant (MAT024): MAGIC TIME INTERNATIONAL LIMITED.

ROOM 618, INTERNATIONAL PLAZA, 20 SHEUNG

YUET ROAD, KOWLOON, HONG KONG.

Manufacturer: MAGIC TIME INTERNATIONAL LIMITED.

ROOM 618, INTERNATIONAL PLAZA, 20 SHEUNG

YUET ROAD, KOWLOON, HONG KONG.

Description of Sample(s): Submitted samples(s) said to be

Product: R/C SPIDER
Brand Name: MAGIC TIME

Model Number: 70364

FCC ID: ZJR70364-27MT

Date Sample(s) Received: 2012-05-14

Date Tested: 2012-05-23

Investigation Requested: Perform ElectroMagnetic Interference measurement in

accordance with FCC 47CFR [Codes of Federal Regulations] Part 15: 2010 and ANSI C63.4:2009 for FCC Certification.

Conclusion(s): The submitted product <u>COMPLIED</u> with the requirements of

Federal Communications Commission [FCC] Rules and Regulations Part 15. The tests were performed in accordance with the standards described above and on Section 2.2 in this

Test Report.

Remark(s): For additional models details, see page 4.

Dr. LEE Kam Chuen,
Authorized Signatory
ElectroMagnetic Compatibility Department
For and on behalf of

The Hong Kong Standards and Testing Centre Ltd.

Date: 2012-05-28 Page 2 of 18

No. : HM167589

CONTENT:

	Cover Content	Page 1 of 18 Page 2-3 of 18
<u>1.0</u>	General Details	
1.1	Equipment Under Test [EUT] Description of EUT operation	Page 4 of 18
1.2	Date of Order	Page 4 of 18
1.3	Submitted Sample(s)	Page 4 of 18
1.4	Test Duration	Page 4 of 18
1.5	Country of Origin	Page 4 of 18
<u>2.0</u>	Technical Details	
2.1	Investigations Requested	Page 5 of 18
2.2	Test Standards and Results Summary	Page 5 of 18
<u>3.0</u>	<u>Test Results</u>	
3.1	Emission	Page 6-9 of 18
3.2	Randwidth Measurement	Page 10-11 of 18

Date: 2012-05-28 Page 3 of 18

No. : HM167589

Appendix A

List of Measurement Equipment Page 12 of 18

Appendix B

Duty Cycle Correction During 100 msec Page 13-15 of 18

Appendix C

Photographs Page 16-18 of 18

Date: 2012-05-28 Page 4 of 18

No. : HM167589

1.0 General Details

1.1 Equipment Under Test [EUT] Description of Sample(s)

Product: R/C SPIDER

Manufacturer: MAGIC TIME INTERNATIONAL LIMITED.

ROOM 618, INTERNATIONAL PLAZA, 20 SHEUNG

YUET ROAD, KOWLOON, HONG KONG.

Brand Name: MAGIC TIME

Model Number: 70364 Additional Model 90234

Number(s):

Rating: 3Vd.c. ("AA" size battery x 2)

1.1.1 Description of EUT Operation

The Equipment Under Test (EUT) is a MAGIC TIME INTERNATIONAL LIMITED. R/C SPIDER. The EUT is a transmitter of radio control toy. The transmitter was operating with 2 buttons; the EUT continues to transmit while one of the button is pressed, It is pulse transmitter, Modulation by IC, and type is pulses modulation.

1.2 Date of Order

2012-05-14

1.3 Submitted Sample(s):

1 Sample

1.4 Test Duration

2012-05-23

1.5 Country of Origin

China

Date : 2012-05-28 Page 5 of 18

No. : HM167589

2.0 Technical Details

2.1 Investigations Requested

Perform ElectroMagnetic Interference measurement in accordance with FCC 47CFR [Codes of Federal Regulations] Part 15: 2010 and ANSI C63.4:2009 for FCC Certification.

2.2 Test Standards and Results Summary Tables

EMISSION Results Summary								
Test Condition	Test Condition Test Requirement Test Method Class / Test Result							
			Severity	Pass	Failed	N/A		
Field Strength of Fundamental Emissions & Spurious Emissions	FCC 47CFR 15.227	ANSI C63.4:2009	N/A	\boxtimes				
Radiated Emissions	FCC 47CFR 15.209	ANSI C63.4:2009	N/A	\boxtimes				

Note: N/A - Not Applicable

Date: 2012-05-28 Page 6 of 18

No. : HM167589

3.0 Test Results

3.1 Emission

3.1.1 Radiated Emissions (30 – 1000MHz)

Test Requirement: FCC 47CFR 15.227
Test Method: ANSI C63.4:2009
Test Date: 2012-05-23
Mode of Operation: Tx mode

Test Method:

The sample was placed 0.8m above the ground plane on a standard radiated emission test site. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. In the frequency range of 9kHz to 30MHz, The center of the loop antenna shall be 1 meter above the ground and rotated loop axis for maximum reading. The emissions worst-case are shown in Test Results of the following pages.

Remark: 3 orthogonal axis apply to hand-held device only.

*: Semi-anechoic chamber located on the STC (Dongguan) Company Ltd. 68 Fumin Nan Road, Dalang, Dongguan, Guangdong, PRC with a metal ground plane filed with the FCC pursuant to section 2.948 of the FCC rules, with Registration Number: 629686.

Date: 2012-05-28 Page 7 of 18

No. : HM167589

Spectrum Analyzer Setting:

9KHz – 30MHz (Pk & Av) RBW: 10kHz

VBW: 30kHz Sweep: Auto

Span: Fully capture the emissions being measured

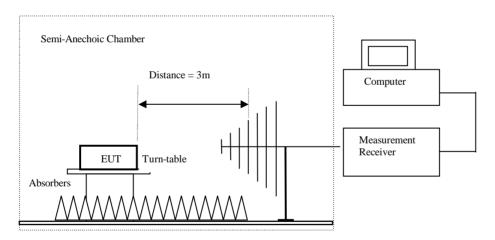
Trace: Max. hold

30MHz – 1GHz (QP) RBW: 120kHz

VBW: 120kHz Sweep: Auto

Span: Fully capture the emissions being measured

Trace: Max. hold


Above 1GHz (Pk & Av) RBW: 3MHz

VBW: 3MHz Sweep: Auto

Span: Fully capture the emissions being measured

Trace: Max. hold

Test Setup:

Ground Plane

Absorbers placed on top of the ground plane are for measurements above 1000MHz only.

Date: 2012-05-28 Page 8 of 18

No. : HM167589

Limits for Field Strength of Fundamental Emissions [FCC 47CFR 15.227]:

Frequency Range of	Field Strength of	Field Strength of	
Fundamental	Fundamental Emission	Fundamental Emission	
	[Peak]	[Average]	
[MHz]	$[\mu V/m]$	$[\mu V/m]$	
26.96-27.28	100,000	10,000	

Results of Tx mode: PASS

Field Strength of Fundamental Emissions									
	Peak Value								
Frequency	Frequency Measured Correction Field Field Limit @3m E-Field								
	Level @3m	Factor	Strength	Strength		Polarity			
MHz	$dB\muV/m$	dB/m	$dB\muV/m$	$\mu V/m$	$\mu V/m$				
27.145	24.3	10.4	34.7	54.3	100,000	Vertical			

Field Strength of Fundamental Emissions										
	Average Value									
Frequency Measured Adjusted by Correction Field Field Limit @3m E-Field							E-Field			
	Level @3m	Duty Cycle	Factor	Strength	Strength		Polarity			
MHz	$dB\mu V/m$	dB	dB/m	$dB\mu V/m$	$\mu V/m$	$\mu V/m$				
27.145	19.3	-5.0	10.4	29.7	30.5	10,000	Vertical			

According to FCC 47CFR15.35, the limit on the radio frequency emissions as measured using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit for the frequency being investigated unless a different peak emission limit is otherwise specified in the rules.

Remarks:

Correction Factor includes Antenna Factor and Cable Attenuation. Calculated measurement uncertainty: 30MHz to 1GHz 5.1dB

Date: 2012-05-28 Page 9 of 18

No. : HM167589

Limits for Radiated Emissions [FCC 47 CFR 15.209]:

Frequency Range	Quasi-Peak Limits
[MHz]	$[\mu V/m]$
30-88	100
88-216	150
216-960	200
Above960	500

The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector and above 1000MHz are based on measurements employing an average detector.

Results of Tx mode: PASS

Radiated Emissions									
Quasi-Peak									
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field			
	Level @3m	Factor	Strength	Strength		Polarity			
MHz	$dB\mu V$	dB/m	dBμV/m	μV/m	μV/m				
54.28	7.4	7.9	15.3	5.8	100	Vertical			
81.44	< 1.0	9.1	< 10.1	< 3.2	100	Vertical			
107.90	6.0	9.3	15.3	5.8	150	Vertical			
121.10	15.8	8.3	24.1	16.0	150	Vertical			
138.60	7.5	8.5	16.0	6.3	150	Vertical			
162.87	< 1.0	10.7	< 11.7	< 3.8	150	Vertical			
190.02	< 1.0	12.0	< 13.0	< 4.5	150	Vertical			
217.16	< 1.0	13.1	< 14.1	< 5.1	200	Vertical			
244.31	< 1.0	15.3	< 16.3	< 6.5	200	Vertical			
271.45	< 1.0	20.6	< 21.6	< 12.0	200	Vertical			

Remarks:

No further spurious emissions found between lowest internal frequency and 30MHz.

Correction Factor includes Antenna Factor and Cable Attenuation.

Calculated measurement uncertainty : 30MHz to 1GHz 5.1dB

Date: 2012-05-28 Page 10 of 18

No. : HM167589

3.2 20dB Bandwidth of Fundamental Emission

Test Requirement: FCC 47 CFR 15.227

Test Method: ANSI C63.4:2009 (Section 13.1.7)

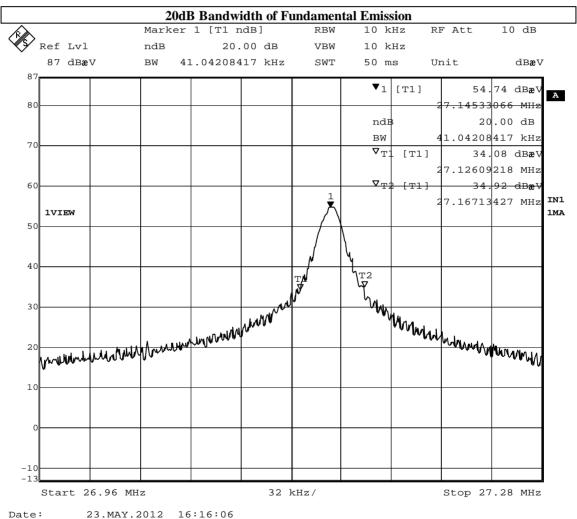
Test Date: 2012-05-23 Mode of Operation: Tx mode

Test Method:

The bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.

Test Setup:

As Test Setup of clause 3.1.1 in this test report.



Date: 2012-05-28 Page 11 of 18

No. : HM167589

Limits for 20dB Bandwidth of Fundamental Emission:

Frequency Range	20dB Bandwidth	FCC Limits		
[MHz]	[kHz]	[MHz]		
27.145	41.04	within 26.96-27.28		

Date: 23.MAY.2012 16:16:06

Date: 2012-05-28 Page 12 of 18

No. : HM167589

Appendix A

List of Measurement Equipment

Radiated Emission

EQP NO.	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CAL	DUE CAL
EM276	Broadband Horn Antenna	A-INFOMW	JXTXLB-	J20310909030	2010/08/21	2013/08/21
			10180-SF	07		
EM215	MULTIDEVICE CONTROLLER	EMCO	2090	00024676	N/A	N/A
EM216	MINI MAST SYSTEM	EMCO	2075	00026842	N/A	N/A
EM217	ELECTRIC POWERED TURNTABLE	EMCO	2088	00029144	N/A	N/A
EM218	ANECHOIC CHAMBER	ETS-Linggren	FACT-3		2011/10/25	2012/10/25
EM194	BICONILOG ANTENNA	EMCO	3142B	1795	2010/10/06	2012/10/06
EM229	EMI Test Receiver	R&S	ESIB40	100248	2012/05/03	2013/05/03
EM022	LOOP ANTENNA	EMCO	6502	1189-2424	2010/09/07	2012/09/07

Remarks:-

CM Corrective Maintenance

N/A Not Applicable or Not Available

TBD To Be Determined

Date: 2012-05-28 Page 13 of 18

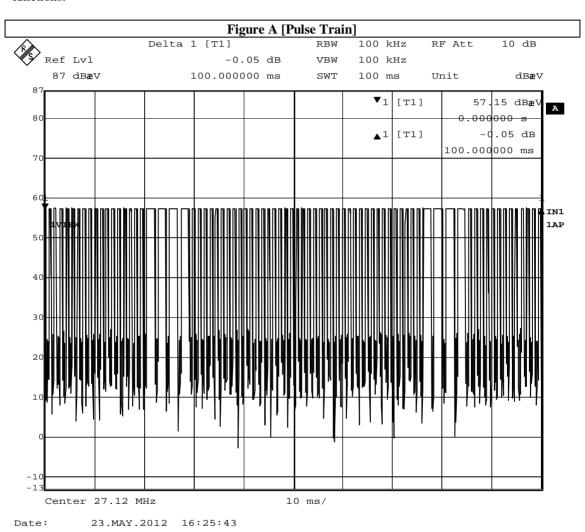
No. : HM167589

Appendix B

Duty Cycle Correction During 100msec

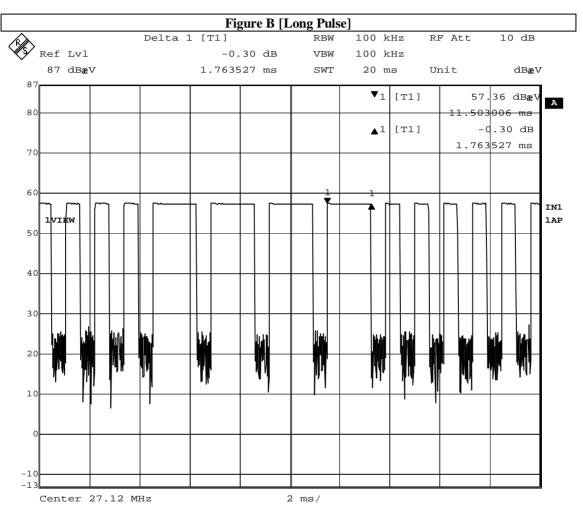
Each function key sends a different series of characters, but each packet period (100msec) never exceeds a series of 8 long pulses (1.76msec) and 70 short pulses (0.6012msec). Assuming any combination of short and long pulses may be obtained due to encoding the worst case transmit duty cycle would be considered (8x1.76msec+70x0.6012msec) per 100msec=56.16% duty cycle. Figure A through C show the characteristics of the pulse train for one of these functions.

Remarks:


Duty Cycle Correction =20Log(0.5616)= -5.0dB

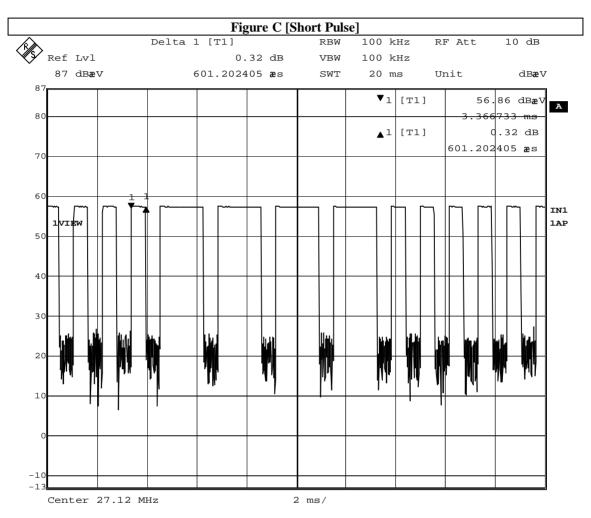
Date : 2012-05-28 Page 14 of 18

No. : HM167589


The following figures [Figure A to Figure C] show the characteristics of the pulse train for one of these functions.

Date: 2012-05-28 Page 15 of 18

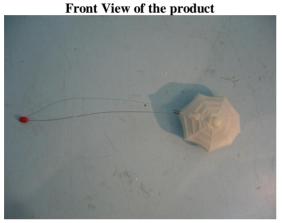
No. : HM167589

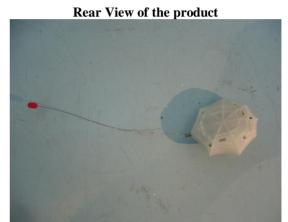


Date: 23.MAY.2012 16:31:07

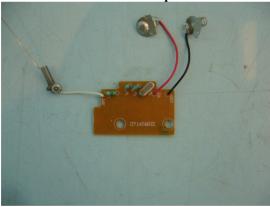
Date: 2012-05-28 Page 16 of 18

No. : HM167589

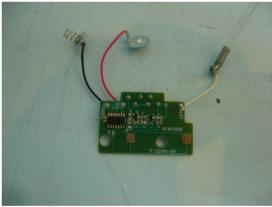



Date: 2012-05-28 Page 17 of 18

No. : HM167589


Appendix C

Photographs of EUT



Inner Circuit Top View

Inner Circuit Bottom View

Date: 2012-05-28 Page 18 of 18

No. : HM167589

Photographs of EUT

***** End of Test Report *****

The Hong Kong Standards and Testing Centre Ltd.

10 Dai Wang Street, Taipo Industrial Estate, N.T., Hong Kong
Tel: (852) 2666 1888 Fax: (852) 2664 4353 Homepage:www.hkstc.org E-mail: hkstc@hkstc.org