

FCC Test Report

EQUIPMENT	:	CDMA 1x-EVDO Wireless data terminal
BRAND NAME	:	ZTE
MODEL NAME	:	AC8710
FCC ID	:	Q78-AC8710PLUS
STANDARD	:	47 CFR Part 2, 22(H)
CLASSIFICATION	:	PCS Licensed transmitter (PCB)
Tx/Rx FREQUENCY RANGE	:	CDMA2000 Cellular : 824.70 ~ 848.31 MHz / 869.70 ~ 893.31 MHz
MAX. ERP POWER	:	CDMA2000 Cellular : 0.08 W for 1xRTT
EMISSION DESIGNATOR	:	1M29F9W
APPLICANT	:	ZTE CORPORATION
		ZTE Plaza, Keji Road South, Hi-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, P.R.China

The product sample received on Jan. 15, 2009 and completely tested on Feb. 13, 2009. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.4-2003 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON (Kunshan) INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Roy Wu / Manager

SPORTON INTERNATIONAL (KUNSHAN) INC. No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P.R.C.

TABLE OF CONTENTS

RE	EVISION HISTORY					
<u></u>						
50		Y OF TEST RESULT	4			
1	GENE	RAL DESCRIPTION	5			
	1.1	Applicant	5			
	1.2	Manufacturer				
	1.3	Feature of Equipment Under Test	5			
	1.4	Testing Site				
	1.5	Applied Standards				
	1.6	Ancillary Equipment List				
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7			
	2.1	Test Mode	7			
	2.2	Connection Diagram of Test System	7			
3	TEST	RESULT	8			
	3.1	Conducted Output Power Measurement	8			
	3.2	Effective Radiated Power				
	3.3	Occupied Bandwidth and Band Edge Measurement	12			
	3.4	Conducted Emission Measurement	15			
	3.5	Field Strength of Spurious Radiation Measurement	18			
	3.6	Frequency Stability Measurement				
4	LIST	OF MEASURING EQUIPMENTS	24			
5	UNCE	RTAINTY OF EVALUATION	25			
6	CERT	IFICATION OF TAF ACCREDITATION	26			

APPENDIX A. PHOTOGRAPHS OF EUT

APPENDIX B. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FG911617	Rev. 01	Initial issue of report	Feb. 13, 2009

Report Section	FCC Rule	IC Rule	Description	Limit	Result
3.1	§2.1046	N/A	Conducted Output Power	N/A	PASS
3.2	§22.913(a)(2)	RSS-132(4.4) SRSP-503(5.1.3)	Effective Radiated Power	< 7 Watts for FCC (<6.3 Watts for IC)	PASS
3.3	§2.1049 §22.917(a)	N/A	Occupied Bandwidth	N/A	PASS
3.3	§2.1051 §22.917(a)	RSS-132 (4.5.1)	Band Edge Measurement	< 43+10log ₁₀ (P[Watts])	PASS
3.4	§2.1051 §22.917(a)	RSS-132 (4.5.1)	Conducted Emission	< 43+10log ₁₀ (P[Watts])	PASS
3.5	§2.1053 §22.917(a)	RSS-132 (4.5.1)	Field Strength of Spurious Radiation	< 43+10log ₁₀ (P[Watts])	PASS
3.6	§2.1055 §22.355	RSS-132(4.3)	Frequency Stability for Temperature & Voltage	< 2.5 ppm	PASS

SUMMARY OF TEST RESULT

1 General Description

1.1 Applicant

ZTE CORPORATION

ZTE Plaza, Keji Road South, Hi-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, P.R.China

1.2 Manufacturer

ZTE CORPORATION

ZTE Plaza, Keji Road South, Hi-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, P.R.China

1.3 Feature of Equipment Under Test

Pro	Product Feature & Specification				
Equipment	CDMA 1x-EVDO Wireless data terminal				
Brand Name	ZTE				
Model Name	AC8710				
Tx Frequency	824 MHz ~ 849 MHz				
Rx Frequency	869 MHz ~ 894 MHz				
Maximum Output Power to Antenna	CDMA2000 Cellular (1xRTT) : 20.04 dBm CDMA2000 Cellular (1xEV-DO Rev. 0) : 19.99 dBm CDMA2000 Cellular (1xEV-DO Rev. A) : 19.94 dBm				
Maximum ERP	CDMA2000 Cellular : 0.08 W (19.29 dBm) for 1xRTT				
Antenna Type	Swivel Antenna				
HW Version	AC2716MD_C22				
SW Version	V3.6.0				
Type of Modulation	QPSK				
Type of Emission	1M29F9W				
EUT Stage	Production Unit				

1.4 Testing Site

Test Site	SPORTON INTERNATIONAL (KUNSHAN) INC.				
	No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P.R.C.				
Test Site Location	tion TEL: +86-0512-5790-0158 FAX: +86-0512-5790-0958				
Test Site No	Sporton Site No.				
Test Site No.	TH01-KS	03CH01-KS			

1.5 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- Preliminary Guidance for Receiving Applications for Certification of 3G Device. May 9, 2006.
- 47 CFR Part 2, 22(H)
- ANSI C63.4-2003
- ANSI / TIA / EIA-603-C-2004
- IC RSS-132

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B (DoC), recorded in a separate test report.

FCC ID Data Cable **Power Cord** Item Equipment Trade Name Model Name R&S CMU 200 N/A 1 System Simulator N/A Unshielded, 1.8 m Unshielded, 1.8 m PC DELL MT320 FCC DoC N/A 2 Hangs-G FCC DoC 3 Monitor Hangs-G Shielded, 1.2 m Unshielded, 1.8 m 4 (USB) Mouse Dell MO56UC FCC DoC Shielded, 1.8 m N/A 5 (USB) Keyboard Dell L100 FCC DoC Shielded, 1.8 m with Core N/A

1.6 Ancillary Equipment List

2 Test Configuration of Equipment Under Test

2.1 Test Mode

During all testing, EUT is in link mode with base station emulator at maximum power level. The spurious emission measurements were carried out in semi-anechoic chamber with 3-meter test range, and EUT is rotated on three test planes to find out the worst emission.

Frequency range investigated for radiated emission is as follows:

1. 30 MHz to 9000 MHz for CDMA2000 Cellular

	Test Modes					
Band	Radiated TCs	Conducted TCs				
CDMA2000	1xRTT Link Mode	1xRTT Link Mode				
Cellular		1xEV-DO Rev. 0 Link Mode				
Ochular		1xEV-DO Rev. A Link Mode				

Note: The RF output power of 1xRTT Link is larger than 1xEV-DO Rev. 0 and 1xEV-DO Rev. A. Therefore, the 1xRTT link mode was used for ERP and RSE testing.

2.2 Connection Diagram of Test System

3 Test Result

3.1 Conducted Output Power Measurement

3.1.1 Description of the Conducted Output Power Measurement

A base station simulator was used to establish communication with the EUT. Its parameters were set to transmit the maximum power on the EUT. The measured power in the radio frequency on the transmitter output terminals shall be reported.

3.1.2 Measuring Instruments

See list of measuring instruments of this test report.

3.1.3 Test Procedures

- 1. The transmitter output port was connected to base station.
- 2. Set EUT at maximum power through base station.
- 3. Select lowest, middle, and highest channels for different modulation.

3.1.4 Test Setup

3.1.5 Test Result of Conducted Output Power

CDMA2000 Cellular					
Test Mode	Test Status	Channel	Frequency (MHz)	Conducted Power (dBm)	Conducted Power (Watts)
		1013 (Low)	824.70	19.55	0.09
	FCH_RC1	384 (Mid)	836.52	19.77	0.09
		777 (High)	848.31	19.25	0.08
		1013 (Low)	824.70	19.27	0.08
CDMA 2000 1xRTT	FCH_RC3	384 (Mid)	836.52	19.86	0.10
		777 (High)	848.31	19.14	0.08
		1013 (Low)	824.70	19.24	0.08
	FCH+SCH_RC3	384 (Mid)	836.52	20.04	0.10
		777 (High)	848.31	19.07	0.08
	RTAP_9.6Kbps	1013 (Low)	824.70	19.99	0.10
		384 (Mid)	836.52	19.98	0.10
		777 (High)	848.31	19.30	0.09
CDMA 2000	RTAP_38.4 Kbps	1013 (Low)	824.70	19.67	0.09
1xEV-DO		384 (Mid)	836.52	19.87	0.10
(Rev. 0)		777 (High)	848.31	19.39	0.09
	RTAP_153.6 Kbps	1013 (Low)	824.70	19.62	0.09
		384 (Mid)	836.52	19.79	0.10
		777 (High)	848.31	19.43	0.09
		1013 (Low)	824.70	19.48	0.09
	RETAP_128 Kbps	384 (Mid)	836.52	19.92	0.10
		777 (High)	848.31	19.32	0.09
CDMA 2000		1013 (Low)	824.70	19.67	0.09
1xEV-DO	RETAP_2048 Kbps	384 (Mid)	836.52	19.89	0.10
(Rev. A)		777 (High)	848.31	19.46	0.09
		1013 (Low)	824.70	19.87	0.10
	RETAP_12288 Kbps	384 (Mid)	836.52	19.94	0.10
		777 (High)	848.31	19.56	0.09

3.2 Effective Radiated Power

3.2.1 Description of the ERP Measurement

ERP is measured by substitution method according to ANSI / TIA / EIA-603-C-2004. The ERP of mobile transmitters must not exceed 7 Watts.

3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

3.2.3 Test Procedures

- 1. The EUT was placed on a turntable with 1.0 meter height in a fully anechoic chamber.
- 2. The EUT was set at 1.2 meters from the receiving antenna, which was mounted on the antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest radiated power.
- 4. The height of the receiving antenna is adjusted to look for the maximum ERP.
- 5. Taking the record of maximum ERP.
- 6. A dipole antenna was substituted in place of the EUT and was driven by a signal generator.
- 7. The conducted power at the terminal of the dipole antenna is measured.
- 8. Repeat step 3 to step 5 to get the maximum ERP of the substitution antenna.
- 9. ERP = Ps + Et Es + Gs = Ps + Rt Rs + Gs
 - Ps (dBm) : Input power to substitution antenna.

Gs (dBi or dBd) : Substitution antenna Gain.

Et = Rt + AF

Es = Rs + AF

AF (dB/m) : Receive antenna factor

Rt: The highest received signal in spectrum analyzer for EUT.

Rs : The highest received signal in spectrum analyzer for substitution antenna.

3.2.4 Test Setup

3.2.5 Test Result of ERP

	CDMA2000 Cellular 850 1xRTT_FCH+SCH_RC3 Radiated Power ERP					
		Hori	zontal Polariza	ation		
Frequency	Rt	Rs	Ps	Gs	ERP	ERP
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(W)
824.70	-29.98	-48.12	0.00	-1.08	17.06	0.05
836.52	-32.70	-48.28	0.00	-0.93	14.65	0.03
848.31	-34.69	-48.35	0.00	-0.76	12.90	0.02
		Ve	rtical Polarizat	ion		
Frequency	Rt	Rs	Ps	Gs	ERP	ERP
(MHz)	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)	(W)
824.70	-27.60	-47.97	0.00	-1.08	19.29	0.08
836.52	-31.54	-48.01	0.00	-0.93	15.54	0.04
848.31	-33.90	-48.05	0.00	-0.76	13.39	0.02

3.3 Occupied Bandwidth and Band Edge Measurement

3.3.1 Description of Occupied Bandwidth and Band Edge Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least $43+10\log_{10}(P[Watts])$ dB.

The emission bandwidth is defined as the width of the signal between two points, located at the 2 sides of the carrier frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

3.3.2 Measuring Instruments

See list of measuring instruments of this test report.

3.3.3 Test Procedures

- 1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
- 2. The 99% and 26 dB occupied bandwidth (BW) of the low, middle and high channels for the highest RF powers were measured and only test data of middle channel was reported.
- The band edges of low and high channels for the highest RF powers were measured. Setting RBW as roughly BW/100.
- The RBW was replaced by 10 kHz, due to the spectrum analyzer IF-Filter including an excess of the limit. A worst case correction factor of 10 log (1% BW/measurement RBW) was implemented.

3.3.4 Test Setup

3.3.5 Test Result (Plots) of Occupied Bandwidth

Band :	CDMA2000 Cellular	Power Stage :	High
Test Mode :	1xRTT_FCH+SCH_RC3		

99% Occupied Bandwidth Plot on Channel 384

Date: 11.FEB.2009 02:30:27

26dB Bandwidth Plot on Channel 384

Date: 11.FEB.2009 01:56:51

3.3.6 Test Result (Plots) of Band Edges

Band :	CDMA2000 Cellular	Power Stage :	High
Test Mode :	1xRTT_FCH+SCH_RC3		

Lower Band Edge Plot on Channel 1013

Date: 11.FEB.2009 03:05:15

Higher Band Edge Plot on Channel 777

Date: 11.FEB.2009 04:41:05

3.4 Conducted Emission Measurement

3.4.1 Description of Conducted Emission Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

3.4.2 Measuring Instruments

See list of measuring instruments of this test report.

3.4.3 Test Procedures

- 1. The EUT was connected to spectrum analyzer and base station via power divider.
- 2. The middle channel for the highest RF power within the transmitting frequency was measured.
- 3. The conducted spurious emission for the whole frequency range was taken.

3.4.4 Test Setup

3.4.5 Test Result (Plots) of Conducted Emission

Band :	CDMA2000 Cellular	Channel :	CH384
Test Mode :	1xRTT_FCH+SCH_RC3		

Conducted Emission Plot between 30M-1G

Date: 13.FEB.2009 03:24:35

Conducted Emission Plot between 1GHz ~ 3GHz

Date: 13.FEB.2009 03:26:49

Conducted Emission Plot between 3GHz ~ 7GHz

Date: 13.FEB.2009 03:27:27

Conducted Emission Plot between 7GHz ~ 9GHz

Date: 13.FEB.2009 03:28:53

3.5 Field Strength of Spurious Radiation Measurement

3.5.1 Description of Field Strength of Spurious Radiated Measurement

The radiated spurious emission was measured by substitution method according to ANSI / TIA / EIA-603-C-2004. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 43+10log₁₀(P[Watts]) dB. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

3.5.2 Measuring Instruments

See list of measuring instruments of this test report.

3.5.3 Test Procedures

- 1. The EUT was placed on a rotatable wooden table with 0.8 meter about ground.
- 2. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 4. The height of the receiving antenna is varied between one meter and four meters to search the maximum spurious emission for both horizontal and vertical polarizations.
- 5. Taking the record of maximum spurious emission.
- 6. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
- 7. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
- 8. Taking the record of output power at antenna port.
- 9. Repeat step 7 to step 8 for another polarization.
- 10. Emission level (dBm) = output power + substitution Gain.

3.5.4 Test Setup

Band :		CDMA200	00 Cellula	r	Temperatu	re :	18~19°C		
Fest Mode :		1xRTT_F	CH+SCH	_RC3	Relative Hu	umidity :	35~36%		
Test Engine	er:	Peter Cho	bu		Polarizatio	n :	Horizontal		
Remark :		Spurious	emissions	s within 30)-1000MHz	were found	d more than 200	dB below limit	t line.
	0	Level (dBm)					Date	e: 2009-01-16	
	0								
							FC	CPART22 24	
								-6dB	
				120		3			
		3	2	1 10	5				
	-50								
	-100	1000	2600.	111	4200.	5800.	7400.	9000	
					Frequency	(MHz)			
Si		: 03CH01-K		TOD ANT 070	1911 HORTZONT	AT.			
Frequency	ERP		Over	SPA	S.G.	TX Cabl	e TX Antenna	Polarization	Resu
equeiley			Limit	Reading		loss	Gain	i olulization	
(MHz)	(dBm	n) (dBm)		(dBm)	(dBm)	(dB)	(dBi)	(H/V)	
1674.00	-51.6		-38.65	-53.97	-59.12	-0.68	8.94	(IVV) H	Pas
2138.00	-49.7		-36.79	-55.44	-57.46	-0.00	9.61	Н	Pas
2510.00			-36.79 -28.89	-55.44 -50.17	-57.46	-0.21	10.30	Н	
	-41.8								Pas
3346.00	-47.2		-34.22	-55.47	-57.94	-2.64	10.23	н	Pas
3994.00	-50.4		-37.40	-60.77	-63.69	-4.59	10.85	Н	Pase
5246.00	-47.2	6 -13	-34.26	-60.22	-63.52	-7.21	11.20	Н	Pass

3.5.5 Test Result of Field Strength of Spurious Radiated

Band :		CDMA20	00 Cellula	r	Temperatu	re :	18~19°C		
Test Mode :	:	1xRTT_F	CH+SCH	_RC3	Relative H	umidity :	35~36%		
Test Engine	er:	Peter Cho	ou		Polarizatio	n :	Vertical		
Remark :		Spurious	emissions	s within 30)-1000MHz	were found	d more than 200	B below limi	t line.
	0	Level (dBm)					Date	e: 2009-01-16	
							FC	CPART22 24	
								-6dB	
		-							
						1. 2020 I			
		1	2 3	4 5	6	7 8			
	-50		T						
	-100	1000							
	0.000	1000	2600.		4200. Frequency	5800. (MHz)	7400.	9000	
Si		: 03CH01-K							
135773			-		0911 VERTICAI	•		·	-
Frequency	ERF	P Limit	Over Limit	SPA Deceline	S.G.	TX Cabl		Polarization	Result
(MHz)	(dBn	n) (dBm		Reading (dBm)	J Power (dBm)	loss (dB)	Gain (dBi)	(H/V)	
1500.00	-50.7		-37.72	-51.75	-58.09	-0.82	8.70	(1 <i>1</i> /v) V	Pass
2248.00	-50.7		-37.72	-57.17	-59.24	-0.83	9.81	V	Pass
2502.00	-48.6		-35.60	-56.9	-59.09	-2.34	10.30	v	Pass
3346.00	-50.7		-37.76	-59.01	-61.48	-2.64	10.23	V	Pass
3526.00	-48.4		-35.47	-57.17	-59.72	-3.17	10.23	V	Pass
4500.00	-50.3	io -13	-37.30	-61.62	-64.59	-4.94	11.50	V	Pass
5238.00	-47.6	64 -13	-34.64	-60.53	-63.82	-7.15	11.18	V	Pass
6000.00	-47.0	2 -13	-34.02	-62.07	-65.52	-8.95	11.70	V	Pass

3.6 Frequency Stability Measurement

3.6.1 Description of Frequency Stability Measurement

The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency.

3.6.2 Measuring Instruments

See list of measuring instruments of this test report.

3.6.3 Test Procedures for Temperature Variation

- 1. The EUT was set up in the thermal chamber and connected with the base station.
- 2. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized for three hours. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.
- 4. If the EUT can not be turned on at -30°C, the testing lowest temperature will be raised in 10°C step until the EUT can be turned on.

3.6.4 Test Procedures for Voltage Variation

- 1. The EUT was placed in a temperature chamber at 25±5°C and connected with the base station.
- 2. The power supply voltage to the EUT was varied from BEP to 115% of the nominal value measured at the input to the EUT.
- 3. The variation in frequency was measured for the worst case.

3.6.5 Test Setup

Thermal Chamber

384

3.6.6	Test Result of Te	emperature Variation	
	Band :	CDMA2000 Cellular	Channel :

Balla			onamor :	001
Test Mode : 1xRTT_		FCH+SCH_RC3	Limit (ppm) :	2.5
Temperature (°C)	1	Freq. Dev. (Hz)	Deviation (ppm)	Result
-30		55	0.06	
-20		46	0.05	
-10		30	0.04	
0		33	0.04	
10	10 20		-0.04	PASS
20			0.04	
30		38	0.04	
40		46	0.05	
50		49	0.06	

3.6.7 Test Result of Voltage Variation

Band & Channel	Mode	Voltage (Volt)	Freq. Dev. (Hz)	Deviation (ppm)	Limit (ppm)	Result
		5.0	25	0.03		
CDMA2000 Cellular CH384	1xRTT FCH+SCH_RC3	BEP	-30	-0.04	2.5	PASS
		5.2	33	0.04		

Remark:

1. Normal Voltage = 5.0V.

2. Battery End Point (BEP) = 4.8 V.

4 List of Measuring Equipments

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Due Date	Remark
Spectrum Analyzer	R&S	FSP40	100319	9kHz~40GHz	Mar. 13, 2007	Mar. 13, 2009	Conducted (TH01-KS)
Thermal Chamber	Ten Billion	TTC-B3S	TBN-930701	N/A	Jun. 27, 2007	Jun. 26, 2009	Conducted (TH01-KS)
Spectrum Analyzer	R&S	ESCI	100724	9kHz~2.75GHz	Feb. 06, 2008	Feb. 05, 2009	Radiation (03CH01-KS)
Spectrum Analyzer	R&S	FSP40	100319	9kHz~40GHz	Dec. 08, 2008	Dec. 07, 2009	Radiation (03CH01-KS)
Bilog Antenna	SCHAFFNER	CBL6112D	23182	25MHz~2GHz	Dec. 17, 2008	Dec. 16, 2009	Radiation (03CH01-KS)
Double Ridge Horn Antenna	EMCO	3117	75959	1GHz~18GHz	Dec. 17, 2008	Dec. 16, 2009	Radiation (03CH01-KS)
Amplifier	Wireless	FPA6592G	600006	30MHz~2GHz	Dec. 17, 2008	Dec. 16, 2009	Radiation (03CH01-KS)
Amplifier	Agilent	8449B	3008A02370	1GHz~26.5GHz	Dec. 17, 2008	Dec. 16, 2009	Radiation (03CH01-KS)
System Simulator	R&S	CMU200	112352	Full-Band	Mar. 07, 2007	Mar. 06, 2009	Radiation (03CH01-KS)
Signal Generator	R&S	SMR40	100455	10MHz~40GHz	Aug. 29, 2007	Aug. 28, 2009	Radiation (03CH01-KS)

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

	Uncerta	ainty of x_i	
Contribution	dB	Probability	$u(x_i)$
	uв	Distribution	
Receiver reading	0.41	Normal(k=2)	0.21
Antenna factor calibration	0.83	Normal(k=2)	0.42
Cable loss calibration	0.25	Normal(k=2)	0.13
Pre Amplifier Gain calibration	0.27	Normal(k=2)	0.14
RCV/SPA specification	2.50	Rectangular	0.72
Antenna Factor Interpolation for Frequency	1.00	Rectangular	0.29
Site imperfection	1.43	Rectangular	0.83
Mismatch	+0.39/-0.41	U-shaped	0.28
Combined standard uncertainty Uc(y)		1.27	
Measuring uncertainty for a level of confidence of 95% U=2Uc(y)		2.54	

Uncertainty of Radiated Emission Measurement (1 GHz ~ 40 GHz)

	Uncerta	inty of x_i			$Ci * u(x_i)$
Contribution	dB	Probability Distribution	$u(x_i)$	Ci	$Ct \cdot u(x_i)$
Receiver reading	±0.10	Normal(k=1)	0.10	1	0.10
Antenna factor calibration	±1.70	Normal(k=2)	0.85	1	0.85
Cable loss calibration	±0.50	Normal(k=2)	0.25	1	0.25
Receiver Correction	±2.00	Rectangular	1.15	1	1.15
Antenna Factor Directional	±1.50	Rectangular	0.87	1	0.87
Site imperfection	±2.80	Triangular	1.14	1	1.14
Mismatch Receiver VSWR Γ1= 0.197 Antenna VSWR Γ2= 0.194 Uncertainty=20log(1-Γ1*Γ2)	+0.34/-0.35	U-shaped	0.244	1	0.244
Combined standard uncertainty Uc(y)		2	2.36		
Measuring uncertainty for a level of confidence of 95% U=2Uc(y)		4	1.72		

6 Certification of TAF Accreditation

	Certificate No. : L1190-081212
	財團法人全國認證基金會 Taiwan Accreditation Foundation
Ce	ertificate of Accreditation
	This is to certify that
	Sporton International Inc.
	& Wireless Communications Laboratory I., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
İs	s accredited in respect of laboratory
Accreditation Criteria	: ISO/IEC 17025:2005
Accreditation Number	: 1190
Originally Accredited	: December 15, 2003
Effective Period	: January 10, 2007 to January 09, 2010
Accredited Scope	: Testing Field, see described in the Appendix
Specific Accreditation Program	: Accreditation Program for Designated Testing Laboratory for Commodities Inspection Accreditation Program for Telecommunication Equipment Testing Laboratory Accreditation Program for BSMI Mutual Recognition Arrangment with Foreign Authorities
	Jay-san Chen
	Jay-San Chen President, Taiwan Accreditation Foundation

The Appendix forms an integral part of this Certificate, which shall be invalid when use without the Appendix

SPORTON INTERNATIONAL (KUNSHAN) INC. TEL : 86-0512-5790-0158 FAX : 86-0512-5790-0958 FCC ID : Q78-AC8710PLUS

Appendix A. Photographs of EUT

Please refer to Sporton report number EP911617 as below.