Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Iac MRA

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL USA

Certificate No

EX-3772_Feb23

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3772
Calibration procedure(s)	QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes
Calibration date	February 13, 2023
This calibration certificate docum The measurements and the unce	ents the traceability to national standards, which realize the physical units of measurements (SI). ertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been conduc	cted in the closed laboratory facility: environment temperature (22 \pm 3) $^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
OCP DAK-3.5 (weighted)	SN: 1249	20-Oct-22 (OCP-DAK3.5-1249_Oct22)	Oct-23
OCP DAK-12	SN: 1016	20-Oct-22 (OCP-DAK12-1016_Oct22)	Oct-23
Reference 20 dB Attenuator	SN: CC2552 (20x)	04-Apr-22 (No. 217-03527)	Apr-23
DAE4	SN: 660	10-Oct-22 (No. DAE4-660_Oct22)	Oct-23
Reference Probe ES3DV2	SN: 3013	06-Jan-23 (No. ES3-3013 Jan23)	Jan-24

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

	Name	Function	Signature
Calibrated by	Jeton Kastrati	Laboratory Technician	10
Approved by	Niels Kuster	Quality Manager	1165
This calibration certificate shall	not be reproduced except in full wit	hout written approval of the laborat	lssued: February 21, 2023 ory.

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Iac-MRA

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization ∂ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc $(k = 2)$
Norm (μ V/(V/m) ²) A	0.46	0.58	0.55	±10.1%
DCP (mV) ^B	98.0	99.0	97.0	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	X	0.00	0.00	1.00	0.00	112.1	±2.6%	±4.7%
		Y	0.00	0.00	1.00		129.7	1	
		Z	0.00	0.00	1.00		125.0	1	_
10352	Pulse Waveform (200Hz, 10%)	X	20.00	90.04	20.04	10.00	60.0	±3.4%	±9.6%
		Y	20.00	89.39	19.86	1.1.1.1.1	60.0	1	
		Z	20.00	92.72	21.87	1.1.1	60.0	1	
10353	Pulse Waveform (200Hz, 20%)	X	20.00	91.03	19.23	6.99	80.0	±1.7%	±9.6%
		Y	20.00	89.26	18.99		80.0	1	
1.1.1.		Z	20.00	94.19	21.44		80.0	5	
10354	Pulse Waveform (200Hz, 40%)	X	20.00	92.11	18.19	3.98	95.0	±1.2%	±9.6%
		Y	20.00	90.56	18.49		95.0		
		Z	20.00	96.80	21.18		95.0	1	
10355	Pulse Waveform (200Hz, 60%)	X	20.00	89.94	15.81	2.22	120.0	±1.1%	±9.6%
		Y	20.00	92.12	18.05		120.0		
		Z	20.00	98.10	20.33		120.0	1	
10387	QPSK Waveform, 1 MHz	X	1.39	64.85	13.55	1.00	150.0	±3.1%	±9.6%
		Y	1.59	65.36	14.34		150.0		
		Z	1.46	64.43	13.63		150.0	1	
10388	QPSK Waveform, 10 MHz	X	1.90	66.14	14.51	0.00	150.0	±1.0%	±9.6%
		Y	2.11	67.14	15.10		150.0		
		Z	1.95	66.03	14.45		150.0		
10396	64-QAM Waveform, 100 kHz	X	2.57	68.63	17.84	3.01	150.0	±0.7%	±9.6%
		Y	3.01	70.70	18.82		150.0		
		Z	2.97	70.54	18.66		150.0		
10399	64-QAM Waveform, 40 MHz	X	3.28	66.27	15.17	0.00	150.0	±2.3%	±9.6%
		Y	3.44	66.79	15.49		150.0		
		Z	3.31	66.22	15.12		150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	4.62	65.24	15.21	0.00	150.0	±4.4%	±9.6%
		Y	4.83	65.55	15.42		150.0		
		Z	4.70	65.20	15.16		150.0	· · · · ·	

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
^B Linearization parameter uncertainty for maximum specified field strength.
^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms V ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
x	36.7	274.39	35.47	10.09	0.31	5.08	0.66	0.30	1.01
у	45.4	339.64	35.56	25.70	0.02	5.10	1.05	0.31	1.01
z	42.5	315.78	35.07	14.52	0.35	5.10	1.32	0.26	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	78.9°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (<i>k</i> = 2)
2450	39.2	1.80	7.33	6.66	6.70	0.31	1.27	±12.0%
5250	35.9	4.71	5.15	4.68	4.72	0.37	1.53	±14.0%
5600	35.5	5.07	4.69	4.26	4.26	0.36	1.77	±14.0%
5750	35.4	5.22	4.78	4.34	4.36	0.37	1.84	±14.0%
5850	35.2	5.32	4.55	4.12	4.19	0.40	1.86	±14.0%

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ϵ and σ by less than ±5% from the target values (typically better than ±3%)

^r The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than ±5% from the target values (typically better than ±3%) and are valid for TSL with deviations of up to ±10%. If TSL with deviations from the target of less than ±5% are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
6500	34.5	6.07	5.48	5.02	5.16	0.20	2.50	±18.6%

^C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ϵ and σ by less than $\pm 10\%$ from the target values (typically better than $\pm 6\%$)

and are valid for TSL with deviations of up to ±10%.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3-6 GHz; and below ±4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide:R22)

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)

Receiving Pattern (ϕ **),** $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)

 $\textbf{Dynamic Range } f(\textbf{SAR}_{\text{head}})$

Uncertainty of Linearity Assessment: ±0.6% (k=2)

Conversion Factor Assessment

Calibration Laboratory of Schmid & Partner **Engineering AG**

Client

Zeughausstrasse 43, 8004 Zurich, Switzerland

ac-MR Telat

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage С Servizio svizzero di taratura

S Swiss Calibration Service

S

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

10	
UL	
Fremont, USA	

Certificate No.

EX-7587_Apr23

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7587
Calibration procedure(s)	QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes
Calibration date	April 18, 2023
This calibration certificate doc The measurements and the u	uments the traceability to national standards, which realize the physical units of measurements (SI). ncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Schodulad Calibusti
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Scheduled Calibration
Power sensor NRP-Z91	SN: 103244	20 Mar 23 (No. 217-03804/03805)	Mar-24
OCP DAK-3.5 (weighted)	SN: 1249	30-Mar-23 (No. 217-03804)	Mar-24
OCP DAK-12		20-Oct-22 (OCP-DAK3.5-1249_Oct22)	Oct-23
	SN: 1016	20-Oct-22 (OCP-DAK12-1016_Oct22)	Oct-23
Reference 20 dB Attenuator	SN: CC2552 (20x)	30-Mar-23 (No. 217-03809)	Mar-24
DAE4	SN: 660	16-Mar-23 (No. DAE4-660 Mar23)	Mar-24
Reference Probe ES3DV2	SN: 3013	06-Jan-23 (No. ES3-3013_Jan23)	Jan-24

Secondary Standards	ID	Check Date (in house)	
Power meter E4419B	SN: GB41293874		Scheduled Check
Power sensor E4412A		06-Apr-16 (in house check Jun-22)	In house check: Jun-24
	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	
Network Analyzer E8358A	SN: US41080477	of hug ss (in house check Jun-22)	In house check: Jun-24
Hetwork Analyzer E0556A	314. 0341080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

	Name	Function	Signature
Calibrated by	Joanna Lleshaj	Laboratory Technician	Attplach
Approved by	Sven Kühn	Technical Manager	. A. festil
This calibration certificat	e shall not be reproduced except in	full without written approval of the lab	lssued: April 25, 2023 oratory.

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Iac-MRA

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taraturaSwiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization ∂ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \text{ MHz}$) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc $(k=2)$
Norm $(\mu V/(V/m)^2)^A$	0.56	0.61	0.55	±10.1%
DCP (mV) ^B	100.5	100.7	104.8	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	X Y	0.00	0.00	1.00	0.00	135.9	±2.1%	±4.7%
			0.00	0.00	1.00	i i	121.9		
10050		Z	0.00	0.00	1.00		136.8	1	
10352	Pulse Waveform (200Hz, 10%)	X	20.00	90.16	20.46	10.00	60.0	±3.4%	±9.6%
		Y	20.00	89.20	20.10		60.0		
10000		Z	20.00	86.80	17.73		60.0	-	
10353	Pulse Waveform (200Hz, 20%)	X	20.00	90.58	19.47	6.99	80.0	±2.2%	±9.6%
		Y	20.00	89.18	19.28		80.0		
		Z	20.00	87.63	16.83		80.0	· · · · ·	
10354	Pulse Waveform (200Hz, 40%)	X	20.00	91.64	18.50	3.98	95.0	±1.6%	±9.6%
		Y	20.00	91.07	19.08		95.0		
		Z	20.00	87.75	15.42		95.0	·	
10355	Pulse Waveform (200Hz, 60%)	X	20.00	90.61	16.60	2.22	120.0	±1.3%	±9.6%
		Y	20.00	93.99	19.29		120.0		
	000////	Z	20.00	82.86	12.01		120.0		
10387	QPSK Waveform, 1 MHz	X	1.72	65.97	15.10	1.00	150.0	±3.0%	±9.6%
		Y	1.82	65.39	15.10		150.0		
_		Z	1.49	64.87	13.86		150.0		
10388	QPSK Waveform, 10 MHz	X	2.34	68.73	15.88	0.00	150.0	±0.8%	±9.6%
		Y	2.40	68.40	15.74		150.0		
		Z	1.99	66.65	14.68		150.0		
10396	64-QAM Waveform, 100 kHz	X	2.91	70.39	18.83	3.01	150.0	±0.8%	±9.6%
		Y	3.48	72.33	19.58		150.0	-	
		Z	2.54	69.32	18.24		150.0		
0399	64-QAM Waveform, 40 MHz	X	3.56	67.40	15.86	0.00	150.0	±2.2%	±9.6%
1.1		Y	3.61	67.25	15.78		150.0		_0.0 /0
		Z	3.34	66.60	15.25	F	150.0		
0414	WLAN CCDF, 64-QAM, 40 MHz	X	4.98	65.77	15.59	0.00	150.0	±4.4%	±9.6%
		Y	5.06	65.61	15.47		150.0		
		Z	4.73	65.43	15.22	t	150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^B Linearization parameter uncertainty for maximum specified field strength. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

443.50				ms		V-1	
445.50	36.06	16.08	0.38	5.10	0.30	0.42	1.01
527.29	35.44	30.19	0.05				1.01
324.15	34.07						1.01
			00.10	0.03	000110 0000 0.000 0.000 0.000	204.45 04.07 0.03 3.10 1.16	324.15 24.07 344 0.00 5.10 1.16 0.37

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	17.1°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
2450	39.2	1.80	7.64	7.53	7.48	0.31	1.27	±12.0%
5250	35.9	4.71	5.37	5.38	5.30	0.39	1.53	±14.0%
5600	35.5	5.07	4.68	4.64	4.62	0.40	1.67	±14.0%
5750	35.4	5.22	4.79	4.82	4.77	0.34	1.81	±14.0%
5850	35.2	5.32	4.64	4.59	4.57	0.39	1.78	±14.0%

Calibration Parameter Determined in Head Tissue Simulating Media

C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ϵ and σ by less than \pm 5% from the target values (typically better than \pm 3%)

and are valid for TSL with deviations of up to ±10%. If TSL with deviations from the target of less than ±5% are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Calibration Parameter Determined in Head Tissue Simulating Media

					(mm)	(k = 2)
6.07	4.60	1 70	ACE	0.00		±18.6%
	6.07	6.07 4.60	6.07 4.60 4.72	6.07 4.60 4.72 4.65	6.07 4.60 4.72 4.65 0.20	6.07 4.60 4.72 4.65 0.20 2.50

^C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration

frequency and the uncertainty for the indicated frequency band. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ϵ and σ by less than ±10% from the target values (typically better than ±6%) and are valid for TSL with deviations of up to $\pm 10\%$

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3-6 GHz; and below ±4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field

Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)

Dynamic Range f(SAR_{head})

Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2)

Conversion Factor Assessment

Calibration Laboratory of Schmid & Partner

Engineering AG

UL

Fremont, USA

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

	Accreditation	Nov	909	0100
-				

S

Multilateral Agreement for the recognition of calibration certificates Client

Certificate No.

EX-7585_Apr23

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7585
Calibration procedure(s)	QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes
Calibration date	April 18, 2023
This calibration certificate docu The measurements and the ur	uments the traceability to national standards, which realize the physical units of measurements (SI). Incertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been cond	ducted in the closed laboratory facility: environment temperature (22 ± 3) $^{\circ}$ C and humidity < 70%.
Calibration Equipment used (N	l&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Schoolulad Caliburat
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Scheduled Calibration
Power sensor NRP-Z91	SN: 103244		Mar-24
OCP DAK-3.5 (weighted)	SN: 1249	30-Mar-23 (No. 217-03804)	Mar-24
OCP DAK-12		20-Oct-22 (OCP-DAK3.5-1249_Oct22)	Oct-23
	SN: 1016	20-Oct-22 (OCP-DAK12-1016_Oct22)	Oct-23
Reference 20 dB Attenuator	SN: CC2552 (20x)	30-Mar-23 (No. 217-03809)	Mar-24
DAE4	SN: 660	16-Mar-23 (No. DAE4-660_Mar23)	Mar-24
Reference Probe ES3DV2	SN: 3013	06-Jan-23 (No. ES3-3013_Jan23)	Jan-24

Secondary Standards	ID	Check Date (in house)	
Power meter E4419B	ONL OD H DODOT		Scheduled Check
	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210		
RF generator HP 8648C		06-Apr-16 (in house check Jun-22)	In house check: Jun-24
	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

	Name	Function Signature
Calibrated by	Joanna Lleshaj	Laboratory Technician
Approved by	Sven Kühn	Technical Manager i.a. A. Ledh b.L.
This calibration certifica	te shall not be reproduced except in	lssued: April 25, 2023 full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage С Servizio svizzero di taratura
- S Swiss Calibration Service

S

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL NORMx,y,z ConvF DCP CF	tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point crest factor (1/duty_cycle) of the RF signal
A, B, C, D Polarization φ Polarization ϑ	modulation dependent linearization parameters φ rotation around probe axis ϑ rotation around an axis that is in the plane normal to probe axis (at measurement contor) i.e. ϑ o is
Connector Angle	normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization $\vartheta = 0$ ($f \le 900$ MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y,z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y,z = NORMx, y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax, y, z; Bx, y, z; Cx, y, z; Dx, y, z; VRx, y, z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- · ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \text{ MHz}$) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc $(k = 2)$
Norm $(\mu V/(V/m)^2)^A$	0.57	0.53	0.60	±10.1%
DCP (mV) ^B	100.1	98.5	99.9	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	X	0.00	0.00	1.00	0.00	134.6	±1.5%	±4.7%
		Y	0.00	0.00	1.00	1	136.6		
10050	D. I. III.	Z	0.00	0.00	1.00		140.8	1	
10352	Pulse Waveform (200Hz, 10%)	X	20.00	91.34	21.00	10.00	60.0	±3.5%	±9.6%
		Y	20.00	88.90	19.61		60.0		
10050		Z	20.00	91.17	20.62		60.0		
10353	Pulse Waveform (200Hz, 20%)	X	20.00	91.67	20.08	6.99	80.0	±1.7%	±9.6%
		Y	20.00	89.46	19.04	1.00	80.0	1	
		Z	20.00	91.75	19.83	1	80.0	()	
10354	Pulse Waveform (200Hz, 40%)	X	20.00	93.07	19.37	3.98	95.0	±0.8%	±9.6%
		Y	20.00	92.24	19.25		95.0		20.070
		Z	20.00	93.14	19.15		95.0	·	
10355	Pulse Waveform (200Hz, 60%)	X	20.00	93.55	18.26	2.22	120.0	±0.7%	±9.6%
		Y	20.00	96.70	20.13		120.0		_01070
		Z	20.00	93.35	17.96		120.0		
10387	QPSK Waveform, 1 MHz	X	1.69	64.89	14.47	1.00	150.0	±2.5%	±9.6%
		Y	1.79	67.11	15.79		150.0	TEIG //	_0.070
		Z	1.70	64.89	14.37		150.0		
10388	QPSK Waveform, 10 MHz	X	2.21	67.34	15.09	0.00	150.0	±0.8%	±9.6%
		Y	2.45	69.61	16.60		150.0	10.070	
		Z	2.22	67.18	14.96		150.0		
10396	64-QAM Waveform, 100 kHz	X	3.09	70.32	18.53	3.01	150.0	±0.6%	±9.6%
1.1		Y	2.96	71.29	19.43	0.01	150.0	1010/0	±9.0%
		Z	2.81	68.93	17.93	t	150.0		
0399	64-QAM Waveform, 40 MHz	X	3.51	66.87	15.49	0.00	150.0	±1.9%	±9.6%
		Y	3.62	67.69	16.18	0.00	150.0	1.070	-0.076
1.1.1		Z	3.54	66.89	15.48	F	150.0		
0414	WLAN CCDF, 64-QAM, 40 MHz	X	4.98	65.56	15.40	0.00	150.0	±3.8%	±9.6%
		Y	4.97	65.86	15.76		150.0	-0.078	-9.0 %
		Z	4.82	64.92	15.06	H	150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

^B Linearization parameter uncertainty for maximum specified field strength.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms V ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	T6
x	61.1	458.36	35.75	17.83	0.26	5.10	0.60	0.45	1.01
у	51.8	391.22	36.39	24.33	0.00	5.10	0.96	0.40	1.01
z	59.6	450.21	36.09	15.55	0.09	5.10	0.22	0.44	1.01

Other Probe Parameters

Triangular
21.4°
enabled
disabled
337 mm
10 mm
9mm
2.5 mm
1 mm
1 mm
1 mm
1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
2450	39.2	1.80	7.35	7.53	7.26	0.28	1.27	±12.0%
5250	35.9	4.71	5.19	5.35	5.11	0.38	1.53	±14.0%
5600	35.5	5.07	4.46	4.56	4.41	0.37	1.75	±14.0%
5750	35.4	5.22	4.69	4.80	4.63	0.33	1.81	±14.0%
5850	35.2	5.32	4.51	4.61	4.44	0.38	1.78	±14.0%

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ϵ and σ by less than \pm 5% from the target values (typically better than \pm 3%)

and are valid for TSL with deviations of up to ±10%. If TSL with deviations from the target of less than ±5% are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc $(k=2)$
6500	34.5	6.07	4.65	4.87	4.54	0.20	2.50	±18.6%

C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than ±10% from the target values (typically better than ±6%)

and are valid for TSL with deviations of up to ±10%.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3-6 GHz; and below ±4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field

Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)

Receiving Pattern (ϕ **),** $\vartheta = 0^{\circ}$

Dynamic Range f(SAR_{head})

Uncertainty of Linearity Assessment: ±0.6% (k=2)

Conversion Factor Assessment

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

C-MRA

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

ULUSA

Certificate No

EX-3989 Jan23

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3989
Calibration procedure(s)	QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes
Calibration date	January 26, 2023
This calibration certificate docur The measurements and the unc	ments the traceability to national standards, which realize the physical units of measurements (SI). certainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been condu	ucted in the closed laboratory facility: environment temperature (22 \pm 3) °C and humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
OCP DAK-3.5 (weighted)	SN: 1249	20-Oct-22 (OCP-DAK3.5-1249_Oct22)	Oct-23
OCP DAK-12	SN: 1016	20-Oct-22 (OCP-DAK12-1016_Oct22)	Oct-23
Reference 20 dB Attenuator	SN: CC2552 (20x)	04-Apr-22 (No. 217-03527)	Apr-23
DAE4	SN: 660	10-Oct-22 (No. DAE4-660_Oct22)	Oct-23
Reference Probe ES3DV2	SN: 3013	06-Jan-23 (No. ES3-3013_Jan23)	Jan-24

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

	Name	Function	Signature
Calibrated by	Jeton Kastrati	Laboratory Technician <i></i>	tell
Approved by	Sven Kühn	Technical Manager	S.La
This calibration certificate	e shall not be reproduced except ir	n full without written approval of the la	Issued: January 26, 2023 boratory.

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

AC-MRA

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

Servizio svizzero di taratura S Swiss Calibration Service

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	arphi rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is
	normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -- Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization ∂ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \text{ MHz}$) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50 \text{ MHz}$.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (<i>k</i> = 2)
Norm $(\mu V/(V/m)^2)^A$	0.54	0.53	0.48	±10.1%
DCP (mV) ^B	98.0	96.0	97.0	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	Β dB√μV	С	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	X	0.00	0.00	1.00	0.00	123.3	±2.2%	±4.7%
		Y	0.00	0.00	1.00		120.1		-
		Z	0.00	0.00	1.00		114.5		24.000
10352	Pulse Waveform (200Hz, 10%)	X	20.00	91.39	20.95	10.00	60.0	±3.2%	±9.6%
		Y	20.00	89.67	20.07	1	60.0	1	
		Z	20.00	91.15	20.88		60.0		
10353	Pulse Waveform (200Hz, 20%)	X	20.00	92.60	20.36	6.99	80.0	±1.7%	±9.6%
		Y	20.00	90.14	19.45	10	80.0	1	
		Z	20.00	91.98	19.99		80.0		
10354	Pulse Waveform (200Hz, 40%)	X	20.00	95.32	20.20	3.98	95.0	±1.1%	±9.6%
		Y	20.00	92.57	19.48	1	95.0	1	
		Z	20.00	93.22	19.02	·	95.0		
10355	Pulse Waveform (200Hz, 60%)	X	20.00	97.56	19.84	2.22	120.0	±0.9%	±9.6%
		Y	20.00	95.71	19.76		120.0	1	
	P	Z	20.00	92.15	17.08		120.0	1	
10387	QPSK Waveform, 1 MHz	X	1.58	64.99	14.30	1.00	150.0	±2.6%	±9.6%
		Y	1.71	65.76	14.96		150.0	1	
	-	Z	1.60	65.59	14.48	1	150.0		
10388	QPSK Waveform, 10 MHz	X	2.10	66.99	15.03	0.00	150.0	±0.8%	±9.6%
		Y	2.28	68.07	15.70	1	150.0	1	
		Z	2.15	67.60	15.28		150.0		
10396	64-QAM Waveform, 100 kHz	X	2.99	70.46	18.59	3.01	150.0	±0.7%	±9.6%
		Y	3.09	70.78	18.95		150.0]	
		Z	2.90	69.89	18.36		150.0	_	
10399	64-QAM Waveform, 40 MHz	X	3.42	66.65	15.42	0.00	150.0	±2.0%	±9.6%
		Y	3.54	67.11	15.77		150.0		
		Z	3.47	67.01	15.60		150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	4.82	65.38	15.31	0.00	150.0	±4.0%	±9.6%
		Y	4.95	65.63	15.55		150.0		11.000
		Z	4.88	65.73	15.52		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 to 7). ^B Linearization parameter uncertainty for maximum specified field strength.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms V ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
Х	49.1	365.42	35.24	13.18	0.32	5.08	1.19	0.30	1.01
у	52.8	398.73	36.21	24.41	0.00	5.10	0.87	0.38	1.01
Z	47.7	358.09	35.77	11.93	0.40	5.09	0.46	0.43	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	88.0°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (<i>k</i> = 2)
6	55.0	0.75	20.77	20.77	20.77	0.00	1.25	±13.3%
13	55.0	0.75	19.03	19.03	19.03	0.00	1.25	±13.3%
30	55.0	0.75	17.07	17.07	17.07	0.00	1.25	±13.3%
64	54.2	0.75	14.42	14.42	14.42	0.00	1.25	±13.3%
450	43.5	0.87	11.23	11.23	11.23	0.16	1.30	±13.3%
750	41.9	0.89	10.22	9.57	9.68	0.40	1.27	±12.0%
900	41.5	0.97	9.57	9.09	9.09	0.40	1.27	±12.0%
1450	40.5	1.20	8.71	8.32	8.40	0.40	1.27	±12.0%
1640	40.2	1.31	8.86	8.36	8.40	0.40	1.27	±12.0%
1750	40.1	1.37	8.98	8.55	8.67	0.28	1.27	±12.0%
1900	40.0	1.40	8.46	8.14	8.21	0.30	1.27	±12.0%
2100	39.8	1.49	8.57	8.28	8.28	0.32	1.27	±12.0%
2300	39.5	1.67	8.06	7.78	7.80	0.32	1.27	±12.0%
2450	39.2	1.80	7.89	7.61	7.67	0.32	1.27	±12.0%
2600	39.0	1.96	7.82	7.59	7.88	0.30	1.27	±12.0%
3300	38.2	2.71	7.22	7.00	7.02	0.36	1.27	±14.0%
3500	37.9	2.91	6.78	6.60	6.62	0.32	1.43	±14.0%
3700	37.7	3.12	6.94	6.71	6.74	0.37	1.27	±14.0%
3900	37.5	3.32	7.12	6.88	6.91	0.30	1.43	±14.0%
4100	37.2	3.53	6.78	6.56	6.57	0.38	1.27	±14.0%
4200	37.1	3.63	6.95	6.72	6.73	0.37	1.27	±14.0%
4400	36.9	3.84	6.87	6.59	6.54	0.38	1.27	±14.0%
4600	36.7	4.04	6.97	6.70	6.73	0.37	1.27	±14.09
4800	36.4	4.25	6.88	6.65	6.64	0.43	1.27	±14.0%
4950	36.3	4.40	6.53	6.28	6.36	0.44	1.36	±14.0%
5250	35.9	4.71	5.36	5.15	5.14	0.40	1.62	±14.0%
5600	35.5	5.07	4.80	4.65	4.65	0.42	1.75	±14.0%
5750	35.4	5.22	5.02	4.83	4.83	0.43	1.75	±14.0%

^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than ±5% from the target values (typically better than ±3%) and are valid for TSL with deviations of up to ±10%. If TSL with deviations from the target of less than ±5% are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (<i>k</i> = 2)
5850	35.2	5.32	4.72	4.60	4.65	0.47	1.78	±14.0%

^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than \pm 5% from the target values (typically better than \pm 3%) and are valid for TSL with deviations of up to \pm 10%. If TSL with deviations from the target of less than \pm 5% are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.
Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (<i>k</i> = 2)
6500	34.5	6.07	5.79	5.52	5.38	0.20	2.50	±18.6%

^C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration

frequency and the uncertainty for the indicated frequency band. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 10\%$ from the target values (typically better than $\pm 6\%$) and are valid for TSL with deviations of up to ±10%.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3–6 GHz; and below ±4% for frequencies between 6–10 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)

Receiving Pattern (ϕ **),** $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)

Dynamic Range f(SAR_{head})

Uncertainty of Linearity Assessment: ±0.6% (k=2)

Conversion Factor Assessment

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Nac-MRA

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Servizio svizzero di taratura Servizio svizzero di taratura

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL USA

Certificate No

EX-3990_Feb23

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3990
Calibration procedure(s)	QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes
Calibration date	February 17, 2023
This calibration certificate docum The measurements and the unc	nents the traceability to national standards, which realize the physical units of measurements (SI). ertainties with confidence probability are given on the following pages and are part of the certificate.
	icted in the closed laboratory facility: environment temperature ((22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
OCP DAK-3.5 (weighted)	SN: 1249	20-Oct-22 (OCP-DAK3.5-1249 Oct22)	Oct-23
OCP DAK-12	SN: 1016	20-Oct-22 (OCP-DAK12-1016_Oct22)	Oct-23
Reference 20 dB Attenuator	SN: CC2552 (20x)	04-Apr-22 (No. 217-03527)	Apr-23
DAE4	SN: 660	10-Oct-22 (No. DAE4-660_Oct22)	Oct-23
Reference Probe ES3DV2	SN: 3013	06-Jan-23 (No. ES3-3013 Jan23)	Jan-24

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

	Name	Function	Signature
Calibrated by	Jeton Kastrati	Laboratory Technician	4= le
Approved by	Niels Kuster	Quality Manager	X
This calibration certificate shall	not be reproduced except in full wit	hout written approval of the la	Issued: February 22, 2023 boratory.

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Iac-MRA

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization $\vartheta = 0$ ($f \le 900$ MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \text{ MHz}$) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50 \text{ MHz}$.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc $(k=2)$
Norm $(\mu V/(V/m)^2)^A$	0.60	0.62	0.62	±10.1%
DCP (mV) ^B	102.0	98.0	96.0	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	Β dB√μV	C	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	X Y	0.00	0.00	1.00	0.00	133.0	±3.4%	±4.7%
			0.00	0.00	1.00	1	133.4	1	
		Z	0.00	0.00	1.00		135.8	1	
10352	Pulse Waveform (200Hz, 10%)	X	20.00	89.99	19.85	10.00	60.0	±3.3%	±9.6%
		Y	11.01	81.38	16.57		60.0	1	
	and the second se	Z	20.00	89.66	19.64		60.0	1	-
10353	Pulse Waveform (200Hz, 20%)	X	20.00	91.17	19.36	6.99	80.0	±1.8%	±9.6%
		Y	20.00	87.47	17.37		80.0		2010/0
		Z	20.00	90.36	18.93		80.0		
10354	Pulse Waveform (200Hz, 40%)	X	20.00	93.43	19.11	3.98	95.0	±0.7%	±9.6%
			20.00	88.41	16.68	1	95.0		
100-14		Z	20.00	91.54	18.18		95.0		
10355	Pulse Waveform (200Hz, 60%)	X	20.00	93.89	18.02	2.22	120.0	±0.7%	±9.6%
		Y	20.00	89.70	16.23		120.0		
		Z	20.00	90.88	16.60		120.0		
10387	QPSK Waveform, 1 MHz	X	1.52	65.19	14.07	1.00	150.0	±2.8%	±9.6%
		Y	1.63	65.93	14.60		150.0		
1		Z	1.52	65.17	13.97		150.0		
10388	QPSK Waveform, 10 MHz	X	2.04	66.85	14.92	0.00	150.0	±1.0%	±9.6%
		Y	2.17	67.67	15.39		150.0		_0.070
	and an end of the second of the	Z	2.05	66.80	14.84		150.0		
10396	64-QAM Waveform, 100 kHz	X	2.78	69.71	18.37	3.01	150.0	±0.7%	±9.6%
		Y	2.80	70.06	18.58		150.0		
		Z	2.66	68.89	17.97		150.0	(
0399	64-QAM Waveform, 40 MHz	X	3.40	66.68	15.41	0.00	150.0	±2.0%	±9.6%
		Y	3.51	67.15	15.68	1	150.0		-0.070
		Z	3.41	66.68	15.39		150.0	· · · · · · · · · · · · · · · · · · ·	
0414	WLAN CCDF, 64-QAM, 40 MHz	X	4.78	65.51	15.38	0.00	150.0	±3.8%	±9.6%
		Y	4.70	65.15	15.21	t	150.0		
		Z	4.81	65.58	15.42		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Linearization parameter uncertainty for maximum specified field strength.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 msV ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
X	42.4	317.54	35.61	14.28	0.02	5.10	0.81	0.31	1.01
у	43.3	321.56	35.13	16.76	0.00	5.05	0.89	0.25	1.01
z	42.1	317.62	35.98	14.84	0.02	5.10	0.50	0.34	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	-10.8°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
750	41.9	0.89	9.72	10.08	9.41	0.36	1.27	±12.0%
900	41.5	0.97	9.39	9.52	8.95	0.33	1.27	±12.0%
1450	40.5	1.20	7.98	8.42	7.63	0.49	1.27	±12.0%
1640	40.2	1.31	8.41	8.92	7.99	0.46	1.27	±12.0%
1750	40.1	1.37	8.37	8.97	8.09	0.28	1.27	±12.0%
1900	40.0	1.40	7.95	8.47	7.69	0.30	1.27	±12.0%
2100	39.8	1.49	8.03	8.55	7.79	0.30	1.27	±12.0%
2300	39.5	1.67	7.66	8.10	7.40	0.30	1.27	±12.0%
2450	39.2	1.80	7.38	7.81	7.11	0.29	1.27	±12.0%
2600	39.0	1.96	7.53	7.98	7.25	0.29	1.27	±12.0%
3300	38.2	2.71	6.82	7.34	6.65	0.35	1.27	±14.0%
3500	37.9	2.91	6.79	7.29	6.62	0.36	1.27	±14.0%
3700	37.7	3.12	6.66	7.18	6.46	0.35	1.27	±14.0%
3900	37.5	3.32	6.61	7.12	6.46	0.36	1.27	±14.0%
4100	37.2	3.53	6.56	7.04	6.40	0.36	1.27	±14.0%
4200	37.1	3.63	6.37	6.89	6.17	0.37	1.27	±14.0%
4400	36.9	3.84	6.07	6.57	5.86	0.38	1.27	±14.0%
4600	36.7	4.04	6.02	6.53	5.83	0.37	1.27	±14.0%
4800	36.4	4.25	6.06	6.54	5.89	0.36	1.27	±14.0%
4950	36.3	4.40	5.79	6.14	5.55	0.44	1.36	±14.0%
5250	35.9	4.71	5.56	5.88	5.39	0.35	1.64	±14.0%
5600	35.5	5.07	4.68	5.06	4.43	0.41	1.67	±14.0%
5750	35.4	5.22	4.89	5.15	4.75	0.42	1.75	±14.0%
5850	35.2	5.32	4.61	5.03	4.39	0.39	1.86	±14.0%

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10 , 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than \pm 5% from the target values (typically better than \pm 3%) and are valid for TSL with deviations of up to \pm 10%. If TSL with deviations from the target of less than \pm 5% are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
6500	34.5	6.07	5.65	5.99	5.33	0.20	2.00	±18.6%

^C Frequency validity at 6.5 GHz is -600/+700 MHz, and ± 700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 10\%$ from the target values (typically better than $\pm 6\%$)

and are valid for TSL with deviations of up to $\pm 10\%$.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3-6 GHz; and below ±4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide:R22)

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)

Dynamic Range f(SAR_{head})

Uncertainty of Linearity Assessment: ±0.6% (k=2)

Conversion Factor Assessment

Uncertainty of Spherical Isotropy Assessment: ±2.6% (k=2)

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Iac-MRA

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client	
--------	--

UL USA Fremont, USA

Certificate No.

EX-7356_Mar23

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7356
Calibration procedure(s)	QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes
Calibration date	March 17, 2023
This calibration certificate doo	uments the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID		Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
OCP DAK-3.5 (weighted)	SN: 1249	20-Oct-22 (OCP-DAK3.5-1249_Oct22)	Oct-23
OCP DAK-12	SN: 1016	20-Oct-22 (OCP-DAK12-1016 Oct22)	Oct-23
Reference 20 dB Attenuator	SN: CC2552 (20x)	04-Apr-22 (No. 217-03527)	Apr-23
DAE4	SN: 660	16-Mar-23 (No. DAE4-660_Mar23)	Mar-24
Reference Probe ES3DV2	SN: 3013	06-Jan-23 (No. ES3-3013_Jan23)	Jan-24

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

	Name	Function	Signature
Calibrated by	Aidonia Georgiadou	Laboratory Technician	Aze
Approved by	Sven Kühn	Technical Manager	S.C
This calibration certificate shall n	ot be reproduced except in full with	nout written approval of the laborat	Issued: March 20, 2023 ory.

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

ilac-mRA

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	arphi rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization ∂ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y,z are only intermediate values, i.e., the uncertainties of NORMx, y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc $(k = 2)$
Norm $(\mu V/(V/m)^2)^A$	0.37	0.54	0.58	±10.1%
DCP (mV) ^B	100.5	96.5	96.0	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	X	0.00	0.00	1.00	0.00	132.5	±3.2%	±4.7%
		Y	0.00	0.00	1.00		138.1		
-		Z	0.00	0.00	1.00		139.7	1	
10352	Pulse Waveform (200Hz, 10%)	X	2.09	63.09	9.16	10.00	60.0	±2.8%	±9.6%
		Y	20.00	88.03	18.73		60.0		
		Z	84.00	108.00	25.00		60.0		2
10353	Pulse Waveform (200Hz, 20%)	X	1.29	62.27	7.59	6.99	80.0	±1.6%	±9.6%
		Y	20.00	89.29	18.33		80.0		
		Z	20.00	92.35	20.08		80.0		S
10354	Pulse Waveform (200Hz, 40%)	X	0.52	60.00	5.20	3.98	95.0	±1.4%	±9.6%
		Y	20.00	93.83	19.32		95.0		
		Z	20.00	94.82	19.81		95.0		
10355	Pulse Waveform (200Hz, 60%)	X	12.70	111.87	5.68	2.22	120.0	±2.3%	±9.6%
		Y	20.00	102.84	22.32		120.0		
		Z	20.00	95.20	18.58		120.0		
10387	QPSK Waveform, 1 MHz	X	1.59	67.35	15.12	1.00	150.0	±2.8%	±9.6%
		Y	1.83	67.82	16.15		150.0		
_		Z	1.63	65.24	14.46		150.0		
10388	QPSK Waveform, 10 MHz	X	2.13	68.48	15.91	0.00	150.0	±0.8%	±9.6%
		Y	2.46	69.78	16.85		150.0		/
	La companya da la comp	Z	2.18	67.38	15.23		150.0		
10396	64-QAM Waveform, 100 kHz	X	2.75	71.08	18.90	3.01	150.0	±0.7%	±9.6%
		Y	3.05	71.82	19.70		150.0		
		Z	2.81	69.07	18.01		150.0	S	
0399	64-QAM Waveform, 40 MHz	X	3.42	67.32	15.84	0.00	150.0	±1.9%	±9.6%
		Y	3.63	67.75	16.29		150.0		
		Z	3.50	66.89	15.59		150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	4.71	65.80	15.59	0.00	150.0	±3.7%	±9.6%
		Y	4.94	65.92	15.83	1	150.0		
		Z	4.93	65.60	15.51		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

B Linearization parameter uncertainty for maximum specified field strength.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms V ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
x	37.4	275.51	34.79	5.79	0.48	4.98	1.41	0.12	1.01
у	46.2	348.40	36.28	14.93	0.00	5.05	1.30	0.21	1.01
z	51.1	389.52	36.77	13.14	0.15	5.10	0.35	0.45	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	-3.9°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
750	41.9	0.89	10.13	10.03	10.11	0.38	1.27	±12.0%
900	41.5	0.97	9.42	9.64	9.74	0.38	1.27	±12.0%
1450	40.5	1.20	8.42	8.55	8.34	0.55	1.27	±12.0%
1640	40.2	1.31	8.52	8.77	8.41	0.50	1.27	±12.0%
1750	40.1	1.37	8.92	9.11	8.91	0.28	1.27	±12.0%
1900	40.0	1.40	8.38	8.52	8.27	0.30	1.27	±12.0%
2100	39.8	1.49	8.27	8.36	8.13	0.31	1.27	±12.0%
2300	39.5	1.67	8.20	8.27	8.06	0.32	1.27	±12.0%
2450	39.2	1.80	7.97	8.05	7.82	0.32	1.27	±12.0%
2600	39.0	1.96	8.02	7.89	7.58	0.32	1.27	±12.0%
3300	38.2	2.71	7.45	7.50	7.27	0.35	1.27	±14.0%
3500	37.9	2.91	7.04	7.09	6.88	0.36	1.27	±14.0%
3700	37.7	3.12	7.06	7.11	6.89	0.36	1.27	±14.0%
3900	37.5	3.32	7.27	7.34	7.09	0.37	1.27	±14.0%
4100	37.2	3.53	7.14	7.20	6.96	0.38	1.27	±14.0%
4200	37.1	3.63	7.03	7.09	6.85	0.38	1.27	±14.0%
4400	36.9	3.84	6.85	6.90	6.68	0.39	1.27	±14.0%
4600	36.7	4.04	6.84	6.89	6.67	0.40	1.27	±14.0%
4800	36.4	4.25	6.59	6.64	6.41	0.40	1.27	±14.0%
4950	36.3	4.40	6.28	6.25	5.98	0.44	1.36	±14.0%
5250	35.9	4.71	5.58	5.73	5.42	0.34	1.64	±14.0%
5600	35.5	5.07	4.98	5.04	4.85	0.43	1.67	±14.0%
5750	35.4	5.22	5.04	5.09	4.84	0.42	1.75	±14.0%
5850	35.2	5.32	4.89	4.92	4.70	0.43	1.78	±14.0%

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10 , 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 5\%$ from the target values (typically better than $\pm 3\%$)

^F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than ±5% from the target values (typically better than ±3%) and are valid for TSL with deviations of up to ±10%. If TSL with deviations from the target of less than ±5% are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
6500	34.5	6.07	5.77	5.74	5.60	0.20	2.00	±18.6%

^C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ϵ and σ by less than ±10% from the target values (typically better than ±6%)

and are valid for TSL with deviations of up to ±10%.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3-6 GHz; and below ±4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide:R22)

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Linearity Assessment: ±0.6% (k=2)

