

### FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-247 ISSUE 1

**CERTIFICATION TEST REPORT** 

FOR

### **APPLE WATCH**

### MODEL NUMBER: A1802

FCC ID: BCG-E3102 IC: 579C-E3102

REPORT NUMBER: 16U23780-E1V3

**ISSUE DATE: AUGUST 27, 2016** 

Prepared for APPLE, INC. 1 INFINITE LOOP CUPERTINO, CA 95014, U.S.A.

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

R

NVLAP LAB CODE 200065-0

### **Revision History**

| Rev. | lssue<br>Date | Revisions                                 | Revised By |
|------|---------------|-------------------------------------------|------------|
| V1   | 08/15/2016    | Initial Review                            | Chin Pang  |
| V2   | 08/26/2016    | Revised report to address TCB's questions | Tina Chu   |
| V3   | 08/27/2016    | Revised Section 8.1                       | Tina Chu   |

Page 2 of 143

# TABLE OF CONTENTS

| 1.   | ATTESTATION OF TEST RESULTS                       | 5   |
|------|---------------------------------------------------|-----|
| 2.   | TEST METHODOLOGY                                  | 6   |
| 3.   | FACILITIES AND ACCREDITATION                      | 6   |
| 4.   | CALIBRATION AND UNCERTAINTY                       | 7   |
| 4.   | .1. MEASURING INSTRUMENT CALIBRATION              | 7   |
| 4.   | .2. SAMPLE CALCULATION                            | 7   |
| 4.   | .3. MEASUREMENT UNCERTAINTY                       | 7   |
| 5.   | EQUIPMENT UNDER TEST                              | 8   |
| 5.   | .1. DESCRIPTION OF EUT                            | 8   |
| 5.   | .2. MAXIMUM OUTPUT POWER                          | 8   |
| 5.   | .3. DESCRIPTION OF AVAILABLE ANTENNAS             | 8   |
| 5.   | .4. SOFTWARE AND FIRMWARE                         | 8   |
| 5.   | .5. WORST-CASE CONFIGURATION AND MODE             | 9   |
| 5.   | .6. DESCRIPTION OF TEST SETUP                     | 10  |
| 6.   | TEST AND MEASUREMENT EQUIPMENT                    | 13  |
| 7.   | ANTENNA PORT TEST RESULTS                         | 14  |
| 7.   | .1. HIGH POWER BASIC DATA RATE GFSK MODULATION    | 17  |
|      | 7.1.1. 20 dB AND 99% BANDWIDTH                    | 17  |
|      | 7.1.2. HOPPING FREQUENCY SEPARATION               | 20  |
|      | 7.1.4. AVERAGE TIME OF OCCUPANCY                  | 24  |
|      | 7.1.5. OUTPUT POWER                               | 28  |
|      | 7.1.6. AVERAGE POWER                              | 29  |
| _    |                                                   | 30  |
| 7.   | .2. HIGH POWER ENHANCED DATA RATE QPSK MODULATION | 35  |
|      | 7.2.2. AVERAGE POWER                              | 36  |
| 7.   | .3. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION | 37  |
|      | 7.3.1. 20 dB AND 99% BANDWIDTH                    | 37  |
|      | 7.3.2. HOPPING FREQUENCY SEPARATION               | 40  |
|      | 7.3.4. AVERAGE TIME OF OCCUPANCY                  | 44  |
|      | 7.3.5. OUTPUT POWER                               | 48  |
|      | 7.3.6. AVERAGE POWER                              | 49  |
| _    |                                                   | 50  |
| 7.   | .4. LOW POWER BASIC DATA RATE GESK MODULATION     | 55  |
|      | 7.4.2. HOPPING FREQUENCY SEPARATION               | 58  |
|      | 7.4.3. NUMBER OF HOPPING CHANNELS                 | 59  |
|      | Page 3 of 143                                     |     |
| UL V | VERIFICATION SERVICES INC. FORM NO: CCSUP47       | 011 |

| DATE: AUGUST 27 |
|-----------------|
|                 |

2016

| FCC ID: BCG-E3102                                      | IC: 579C-E3102 |
|--------------------------------------------------------|----------------|
| 7.4.4. AVERAGE TIME OF OCCUPANCY                       |                |
| 7.4.5. OUTPUT POWER                                    |                |
| 7.4.7. CONDUCTED SPURIOUS EMISSIONS                    |                |
| 7.5. LOW POWER ENHANCED DATA RATE QPSK MODULATION      |                |
| 7.5.1. OUTPUT POWER                                    |                |
| 7.5.2. AVERAGE POWER                                   |                |
| 7.6. LOW POWER ENHANCED DATA RATE 8PSK MODULATION      |                |
|                                                        |                |
| 7.6.3. NUMBER OF HOPPING CHANNELS                      |                |
| 7.6.4. AVERAGE TIME OF OCCUPANCY                       |                |
| 7.6.5. OUTPUT POWER                                    |                |
|                                                        |                |
|                                                        |                |
| 8. RADIATED TEST RESULTS                               |                |
| 8.1. LIMITS AND PROCEDURE                              |                |
| 8.2. ABOVE 1 GHz                                       |                |
| 8.2.1. HIGH POWER BASIC DATA RATE GFSK MODULATION      |                |
| 8.2.2. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION   |                |
| 8.2.3. LOW POWER BASIC DATA RATE GESK MODULATION       |                |
| 0.2.4. LOW I OWEN ENHANCED DATA NATE OF SK MODULATION. |                |
| 8.3. WORST-CASE BELOW 1 GHz                            |                |
| 8.4. WORST-CASE ABOVE 18 GHz                           | 136            |
| 9. AC POWER LINE CONDUCTED EMISSIONS                   | 138            |
| 10. SETUP PHOTOS                                       | 139            |
|                                                        |                |

REPORT NO: 16U23780-E1V3

Page 4 of 143

Pass

## **1. ATTESTATION OF TEST RESULTS**

| COMPANY NAME:    | APPLE, INC.<br>1 INFINITE LOOP<br>CUPERTINO, CA 95014, U.S.A. |              |
|------------------|---------------------------------------------------------------|--------------|
| EUT DESCRIPTION: | APPLE WATCH                                                   |              |
| MODEL:           | A1802                                                         |              |
| SERIAL NUMBER:   | FH7RM045H91M                                                  |              |
| DATE TESTED:     | JUNE 25 - AUGUST 23, 2016                                     |              |
|                  | APPLICABLE STANDARDS                                          |              |
| STANDARD         |                                                               | TEST RESULTS |
| CFR 47           | CFR 47 Part 15 Subpart C                                      |              |
| INDUSTRY CA      | NADA RSS-247 Issue 1                                          | Pass         |
|                  |                                                               |              |

**INDUSTRY CANADA RSS-GEN Issue 4** 

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

Prepared By:

Chin Pany

CHIN PANG SENIOR ENGINEER UL VERIFICATION SERVICES INC.

Jingey

JINGANG LI EMC ENGINEER UL VERIFICATION SERVICES INC.

Page 5 of 143

# 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, RSS-GEN Issue 4, and RSS-247 Issue 1.

# 3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

| 47173 Benicia Street | 47266 Benicia Street |
|----------------------|----------------------|
| Chamber A            | Chamber D            |
| Chamber B            | Chamber E            |
| Chamber C            | 🛛 Chamber F          |
|                      | 🛛 Chamber G          |
|                      | 🖂 Chamber H          |

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers A through H are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-8, respectively.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

Page 6 of 143

# 4. CALIBRATION AND UNCERTAINTY

# 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

# 4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

# 4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| PARAMETER                                | UNCERTAINTY |
|------------------------------------------|-------------|
| Conducted Disturbance, 9KHz to 0.15 MHz  | 3.84 dB     |
| Conducted Disturbance, 0.15 to 30 MHz    | 3.65 dB     |
| Radiated Disturbance, 9KHz to 30 MHz     | 3.15 dB     |
| Radiated Disturbance, 30 to 1000 MHz     | 5.36 dB     |
| Radiated Disturbance,1000 to 18000 MHz   | 4.32 dB     |
| Radiated Disturbance, 18000 to 26000 MHz | 4.45 dB     |
| Radiated Disturbance,26000 to 40000 MHz  | 5.24 dB     |

Uncertainty figures are valid to a confidence level of 95%.

Page 7 of 143

# 5. EQUIPMENT UNDER TEST

# 5.1. DESCRIPTION OF EUT

The EUT is an Apple Watch with WLAN, Bluetooth and NFC support.

# 5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

| Frequency Range | Mode          | Output Power | Output Power |
|-----------------|---------------|--------------|--------------|
| (MHz)           |               | (dBm)        | (mW)         |
| 2402 - 2480     | Basic GFSK    | 17.60        | 57.54        |
| 2402 - 2480     | DQPSK         | 16.56        | 45.29        |
| 2402 - 2480     | Enhanced 8PSK | 16.64        | 46.13        |

# 5.3. DESCRIPTION OF AVAILABLE ANTENNAS

| Frequency Band<br>(GHz) | Antenna Gain (dBi) |  |
|-------------------------|--------------------|--|
| 2.4                     | -10.50             |  |

# 5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was 14S310.

Page 8 of 143

# 5.5. WORST-CASE CONFIGURATION AND MODE

EUT has 1 type of enclosure and various kinds of metallic and non-metallic wristbands. There are 2 types of metallic bands; Metal Links, and Metal Mesh. The worst-case configuration was investigated within these combinations charging with/without wireless charger by AC/DC adapter and it was determined that EUT with wristband charging with wireless charger by AC/DC adapter was the worst-case; therefore, all final radiated testing was performed with this configuration. There is no significant difference among various kinds of wristbands.

Radiated emission below 1G was performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X/Y/Z, it was determined that Z - portrait orientation was worst-case orientation. Therefore, all final radiated testing was performed with the EUT in Z - portrait orientation.

Worst-case data rates were:

GFSK mode: DH5 8PSK mode: 3-DH5

DQPSK mode has been verified to have the lowest power.

Page 9 of 143

## 5.6. DESCRIPTION OF TEST SETUP

#### SUPPORT EQUIPMENT

| Support Equipment List |              |         |                        |          |  |  |  |  |
|------------------------|--------------|---------|------------------------|----------|--|--|--|--|
| Description            | Manufacturer | Model   | Serial Number          | FCC ID   |  |  |  |  |
| Laptop AC/DC adapter   | Lenovo       | 92P1160 | 11S92P1160Z1ZBGH798B12 | N/A      |  |  |  |  |
| Laptop                 | Lenovo       | 7659    | L3-AL664 08/03         | N/A      |  |  |  |  |
| Wireless Charger       | Apple        | A1768   | DLC616200ZYHE1Y835     | BCGA1768 |  |  |  |  |
| AC/DC adapter          | Apple        | A1385   | D293154U2DTDHLHCW      | N/A      |  |  |  |  |
| Test jig               | Apple        | -       | OYOOH217               | N/A      |  |  |  |  |

#### I/O CABLES (CONDUCTED TEST)

| I/O Cable List |         |                                               |                 |             |            |                       |  |  |
|----------------|---------|-----------------------------------------------|-----------------|-------------|------------|-----------------------|--|--|
| Cable          | Port    | Port # of identical Connector Type Cable Type |                 | Cable Type  | Cable      | Remarks               |  |  |
| No             |         | ports                                         |                 |             | Length (m) |                       |  |  |
| 1              | Antenna | 1                                             | SMA             | Un-Shielded | 0.2        | To spectrum Analyzer  |  |  |
| 2              | USB     | 1                                             | USB to mini USB | Shielded    | 1          | To laptop and fixture |  |  |

#### I/O CABLES (BELOW AND ABOVE 1G RADIATED TEST)

| I/O Cable List |      |                |           |       |            |  |  |  |
|----------------|------|----------------|-----------|-------|------------|--|--|--|
| Cable          | Port | # of identical | Connector | Cable | Remarks    |  |  |  |
| No             |      | ports          | Туре      |       | Length (m) |  |  |  |
|                |      |                |           |       |            |  |  |  |

Page 10 of 143

#### TEST SETUP- CONDUCTED PORT

The EUT was placed in a test jig and test jig connected to a host Laptop via USB cable adapter and spectrum analyzer to antenna port. Test software exercised the EUT.

#### SETUP DIAGRAM



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 11 of 143

#### TEST SETUP- BELOW AND ABOVE 1GHZ TESTS

EUT was powered by battery and charged by AC/DC adapter via USB cable with wireless charger. Test software exercised the EUT.

#### SETUP DIAGRAM



Page 12 of 143

# 6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

| Test Equipment List                                   |                |                                |                |              |  |  |
|-------------------------------------------------------|----------------|--------------------------------|----------------|--------------|--|--|
| Description                                           | Manufacturer   | Model                          | T Number       | Cal Due      |  |  |
| Antenna, Horn 1-18GHz                                 | ETS Lindgren   | 3117                           | T120           | 4/5/2017     |  |  |
| Antenna, Broadband Hybrid,<br>30MHz to 2000MHz        | Sunol Sciences | JB3                            | T122           | 1/29/2017    |  |  |
| Amplifier, 10KHz to 1GHz,<br>32dB                     | Sonoma         | 310N                           | T173           | 6/17/2017    |  |  |
| Spectrum Analyzer, PXA, 3Hz<br>to 44GHz               | Agilent        | N9030A                         | T341           | 10/14/2016   |  |  |
| Antenna, Horn 1-18GHz                                 | ETS Lindgren   | 3117                           | T862           | 4/18/2017    |  |  |
| Antenna, Broadband Hybrid,<br>30MHz to 2000MHz        | Sunol Sciences | JB3                            | T899           | 5/26/2017    |  |  |
| Amplifier, 1 - 18GHz                                  | Miteq          | AFS42-<br>00101800-25-S-<br>42 | T491           | 5/31/2017    |  |  |
| Amplifier, 10KHz to 1GHz,<br>32dB                     | Sonoma         | 310N                           | T834           | 6/17/2017    |  |  |
| Spectrum Analyzer, PXA, 3Hz<br>to 44GHz               | Agilent        | N9030A                         | T905           | 6/21/2017    |  |  |
| Power Meter, P-series single<br>channel               | Agilent        | N1911A                         | T1271          | 7/8/2017     |  |  |
| Power Sensor, P - series,<br>50MHz to 18GHz, Wideband | Agilent        | N1921A                         | T1228          | 6/20/2017    |  |  |
| Antenna, Horn 18 to 26.5GHz                           | ARA            | MWH-1826                       | T447           | 6/16/2017    |  |  |
| **Spectrum Analyzer, 40 GHz                           | Agilent        | 8564E                          | T106           | 8/13/2016    |  |  |
| Amplifier, 1 to 26.5GHz,<br>23.5dB Gain minimum       | Keysight       | 8449B                          | T402           | 7/5/2017     |  |  |
|                                                       | UL SOFT        | WARE                           |                |              |  |  |
| * Radiated Software                                   | UL             | UL EMC                         | Ver 9.5, June  | e 24, 2015   |  |  |
| * Conducted Software                                  | UL             | UL EMC                         | Ver 4.0, Janua | ary 11, 2016 |  |  |

Note: \* indicates automation software version used in the compliance certification testing \*\* Test equipment was used before equipment calibration due date.

# 7. ANTENNA PORT TEST RESULTS

### **ON TIME AND DUTY CYCLE**

#### **LIMITS**

None; for reporting purposes only.

#### PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.

#### ON TIME AND DUTY CYCLE RESULTS

**HIGH POWER** 

| Mode           | <b>ON Time</b> | Period | Duty Cycle | Duty    | Duty Cycle               | 1/B         |
|----------------|----------------|--------|------------|---------|--------------------------|-------------|
|                | В              |        | x          | Cycle   | <b>Correction Factor</b> | Minimum VBW |
|                | (msec)         | (msec) | (linear)   | (%)     | (dB)                     | (kHz)       |
| Bluetooth GFSK | 10.000         | 10.000 | 1.000      | 100.00% | 0.00                     | 0.010       |
| Bluetooth 8PSK | 10.000         | 10.000 | 1.000      | 100.00% | 0.00                     | 0.010       |

#### LOW POWER

| Mode           | <b>ON Time</b> | Period | <b>Duty Cycle</b> | Duty    | Duty Cycle               | 1/B         |
|----------------|----------------|--------|-------------------|---------|--------------------------|-------------|
|                | В              |        | x                 | Cycle   | <b>Correction Factor</b> | Minimum VBW |
|                | (msec)         | (msec) | (linear)          | (%)     | (dB)                     | (kHz)       |
| Bluetooth GFSK | 10.000         | 10.000 | 1.000             | 100.00% | 0.00                     | 0.010       |
| Bluetooth 8PSK | 10.000         | 10.000 | 1.000             | 100.00% | 0.00                     | 0.010       |

Page 14 of 143

#### **DUTY CYCLE PLOTS**

#### **HOPPING OFF**

| Keysight Spectrum Analyzer - 30554,      | Temp B                               | CENCE-INT     |                   | 01-42-08 AM 3-122, 2016         |                               |
|------------------------------------------|--------------------------------------|---------------|-------------------|---------------------------------|-------------------------------|
| NE 10 30 32                              |                                      | Jei e e       | Avg Type: Log-Pwr | TRACE 1 2 3 4 5 6               | Frequency                     |
| Ref Offset 10.5<br>0 dB/div Ref 30.50 dB | PNO: Fast ↔<br>IFGain:Low<br>dB<br>m | #Atten: 30 dB |                   | DET P NNNN                      | Auto Tune                     |
| og                                       |                                      |               |                   |                                 | Center Freq                   |
| 20.5                                     |                                      |               |                   |                                 | 2.441000000 GHz               |
| 500                                      |                                      |               |                   |                                 | Start Fred<br>2.441000000 GHz |
| 3.50                                     |                                      |               |                   |                                 | Stop Fred<br>2.441000000 GHz  |
| 19.5                                     |                                      |               |                   |                                 | CE Oton                       |
| 39.5                                     |                                      |               |                   |                                 | 8.000000 MHz<br>Auto Mar      |
| 19.5                                     |                                      |               |                   |                                 | Freq Offse                    |
| 59.5                                     |                                      |               |                   |                                 |                               |
| enter 2.441000000 GH                     | z<br>#VBW                            | ( 50 MHz      | Sweep 1           | Span 0 Hz<br>0.00 ms (1001 pts) |                               |

| 🚺 Keysight Spectrum Analyzer - 30554, Ten<br>XI RL RF 50 Ω DC | PNO: East                    | SENSE:INT                     | ALIGN AUTO<br>Avg Type: Log-Pwr              | 01:42:45 AM Jul 23, 2016<br>TRACE 1 2 3 4 5 6<br>TYPE WWWWWW | Frequency                                  |
|---------------------------------------------------------------|------------------------------|-------------------------------|----------------------------------------------|--------------------------------------------------------------|--------------------------------------------|
| Ref Offset 10.5 dB<br>10 dB/div <b>Ref 30.50 dBm</b>          | IFGain:Low                   | #Atten: 30 dB                 |                                              | DET PNNNN                                                    | Auto Tune                                  |
| 20.5                                                          | nanakan ng manakang makalana | angerigangerigangerigangeriga | nersetten en ten en ten en ten ten en ten te | Alexyoda ala ana ala ana ana ana ana ana ana an              | Center Freq<br>2.441000000 GHz             |
| .500                                                          |                              |                               |                                              |                                                              | Start Freq<br>2.441000000 GHz              |
| 9.50                                                          |                              |                               |                                              |                                                              | <b>Stop Freq</b><br>2.441000000 GHz        |
| 29.5                                                          |                              |                               |                                              |                                                              | CF Step<br>8.000000 MHz<br><u>Auto</u> Mar |
| 49.5                                                          |                              |                               |                                              |                                                              | Freq Offset<br>0 Hz                        |
| 59.5                                                          |                              |                               |                                              |                                                              |                                            |
| Res BW 8 MHz                                                  | #VBW                         | / 50 MHz                      | Sweep 1                                      | 5pan 0 Hz<br>0.00 ms (1001 pts)                              |                                            |

Page 15 of 143

| keysight Spectrum Analyzer - 305<br>RL RF 50 Ω<br>Center Freq 2.44100 | DC<br>DC<br>OOOO GHZ<br>PNO: Fas<br>IFGain:Lo | SENSE:INT<br>t ↔ Trig: Free Run<br>w #Atten: 30 dB | ALIGN AUTO<br>Avg Type: Log-Pwr | 01:40:26 AM Jul 23, 2016<br>TRACE 1 2 3 4 5 6<br>TYPE WWWWWW<br>DET P NNNN | Frequency                                 |
|-----------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|---------------------------------|----------------------------------------------------------------------------|-------------------------------------------|
| Ref Offset 10.<br>0 dB/div Ref 30.50 d                                | 5 dB<br>Bm                                    |                                                    |                                 |                                                                            |                                           |
| 20.5                                                                  |                                               |                                                    |                                 |                                                                            | Center Fred<br>2.441000000 GHz            |
| 500                                                                   |                                               |                                                    |                                 |                                                                            | Start Free<br>2.441000000 GH;             |
| 9.5                                                                   |                                               |                                                    |                                 |                                                                            | <b>Stop Fred</b><br>2.441000000 GH:       |
| 9.5                                                                   |                                               |                                                    |                                 |                                                                            | CF Step<br>8.000000 MH<br><u>Auto</u> Mar |
| 9.5                                                                   |                                               |                                                    |                                 |                                                                            | Freq Offse<br>0 Hi                        |
| 9.5                                                                   |                                               |                                                    |                                 |                                                                            |                                           |
| enter 2.441000000 G                                                   | Hz<br>#\                                      | /BW 50 MHz                                         | Sweep 1                         | Span 0 Hz<br>0.00 ms (1001 pts)                                            |                                           |



Page 16 of 143

## 7.1. HIGH POWER BASIC DATA RATE GFSK MODULATION

### 7.1.1. 20 dB AND 99% BANDWIDTH

#### <u>LIMIT</u>

None; for reporting purposes only.

#### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to  $\geq$  1% of the 20 dB bandwidth. The VBW is set to  $\geq$  RBW. The sweep time is coupled.

#### RESULTS

| Frequency | 20 dB Bandwidth | 99% Bandwidth |
|-----------|-----------------|---------------|
| (MHz)     | (KHz)           | (KHz)         |
| 2402      | 948.4           | 928.91        |
| 2441      | 939.2           | 928.23        |
| 2480      | 898.9           | 873.08        |

Page 17 of 143

#### 20 dB AND 99% BANDWIDTH





Page 18 of 143



Page 19 of 143

### 7.1.2. HOPPING FREQUENCY SEPARATION

#### <u>LIMIT</u>

FCC §15.247 (a) (1)

IC RSS-247 (5.1) (2)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

#### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 910 kHz. The sweep time is coupled.

#### **RESULTS**

#### HOPPING FREQUENCY SEPARATION



Page 20 of 143

## 7.1.3. NUMBER OF HOPPING CHANNELS

#### <u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-247 (5.1) (4)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

#### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

#### **RESULTS**

Normal Mode: 79 Channels observed.

Page 21 of 143

#### NUMBER OF HOPPING CHANNELS





Page 22 of 143





Page 23 of 143

## 7.1.4. AVERAGE TIME OF OCCUPANCY

#### <u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-247 (5.1) (4)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

#### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels \* 0.4 s) is equal to 10 \* (# of pulses in 3.16 s) \* pulse width.

For AFH mode, the average time of occupancy in the specified 8 second period (20 channels \* 0.4 seconds) is equal to 10 \* (# of pulses in 0.8 s) \* pulse width.

#### **RESULTS**

| DH Packet                             | Pulse                                              | Number of                                               | Average Time                                            | Limit                        | Margin                              |
|---------------------------------------|----------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------------------|-------------------------------------|
|                                       | Width                                              | Pulses in                                               | of Occupancy                                            |                              |                                     |
|                                       | (msec)                                             | 3.16                                                    | (sec)                                                   | (sec)                        | (sec)                               |
|                                       |                                                    | seconds                                                 |                                                         |                              |                                     |
| GFSK Norma                            | I Mode                                             |                                                         |                                                         |                              |                                     |
| DH1                                   | 0.394                                              | 30                                                      | 0.118                                                   | 0.4                          | -0.282                              |
| DH3                                   | 1.654                                              | 15                                                      | 0.248                                                   | 0.4                          | -0.152                              |
| DH5                                   | 2.888                                              | 10                                                      | 0.289                                                   | 0.4                          | -0.111                              |
|                                       |                                                    |                                                         |                                                         |                              |                                     |
| DH Packet                             | Pulse                                              | Number of                                               | Average Time                                            | Limit                        | Margin                              |
| DH Packet                             | Pulse<br>Width                                     | Number of<br>Pulses in                                  | Average Time<br>of Occupancy                            | Limit                        | Margin                              |
| DH Packet                             | Pulse<br>Width<br>(msec)                           | Number of<br>Pulses in<br>0.8                           | Average Time<br>of Occupancy<br>(sec)                   | Limit<br>(sec)               | Margin<br>(sec)                     |
| DH Packet                             | Pulse<br>Width<br>(msec)                           | Number of<br>Pulses in<br>0.8<br>seconds                | Average Time<br>of Occupancy<br>(sec)                   | Limit<br>(sec)               | Margin<br>(sec)                     |
| DH Packet<br>GFSK AFH M               | Pulse<br>Width<br>(msec)<br>lode                   | Number of<br>Pulses in<br>0.8<br>seconds                | Average Time<br>of Occupancy<br>(sec)                   | Limit<br>(sec)               | Margin<br>(sec)                     |
| DH Packet<br>GFSK AFH M<br>DH1        | Pulse<br>Width<br>(msec)<br>Iode<br>0.394          | Number of<br>Pulses in<br>0.8<br>seconds<br>7.5         | Average Time<br>of Occupancy<br>(sec)<br>0.030          | Limit<br>(sec)<br>0.4        | Margin<br>(sec)<br>-0.370           |
| DH Packet<br>GFSK AFH M<br>DH1<br>DH3 | Pulse<br>Width<br>(msec)<br>lode<br>0.394<br>1.654 | Number of<br>Pulses in<br>0.8<br>seconds<br>7.5<br>3.75 | Average Time<br>of Occupancy<br>(sec)<br>0.030<br>0.062 | Limit<br>(sec)<br>0.4<br>0.4 | Margin<br>(sec)<br>-0.370<br>-0.338 |

Page 24 of 143

#### PULSE WIDTH - DH1



#### NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH1



Page 25 of 143

#### PULSE WIDTH – DH3



#### NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD – DH3



Page 26 of 143

#### PULSE WIDTH – DH5



#### NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD – DH5



Page 27 of 143

## 7.1.5. OUTPUT POWER

#### <u>LIMIT</u>

§15.247 (b) (1)

RSS-247 (5.4) (2)

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

#### TEST PROCEDURE

The transmitter output is connected to a wideband peak and average power meter.

#### **RESULTS**

|--|

| Channel | Frequency | Output Power | Limit | Margin |
|---------|-----------|--------------|-------|--------|
|         | (MHz)     | (dBm)        | (dBm) | (dB)   |
| Low     | 2402      | 17.60        | 30    | -12.40 |
| Middle  | 2441      | 17.55        | 30    | -12.45 |
| High    | 2480      | 17.50        | 30    | -12.50 |

Page 28 of 143

### 7.1.6. AVERAGE POWER

#### <u>LIMIT</u>

None; for reporting purposes only.

#### TEST PROCEDURE

The transmitter output is connected to a power meter.

#### **RESULTS**

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

| ID: | 44353 | Date: | 8/11/16 |
|-----|-------|-------|---------|
|-----|-------|-------|---------|

| Channel | Frequency | Average Power |
|---------|-----------|---------------|
|         | (MHz)     | (dBm)         |
| Low     | 2402      | 17.45         |
| Middle  | 2441      | 17.43         |
| High    | 2480      | 17.40         |

Page 29 of 143

### 7.1.7. CONDUCTED SPURIOUS EMISSIONS

#### **LIMITS**

FCC §15.247 (d)

IC RSS-247 (5.5)

Limit = -20 dBc

#### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

#### **RESULTS**

Page 30 of 143

#### SPURIOUS EMISSIONS, LOW CHANNEL





Page 31 of 143

#### SPURIOUS EMISSIONS, MID CHANNEL





Page 32 of 143

#### SPURIOUS EMISSIONS, HIGH CHANNEL





Page 33 of 143

#### SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON





Page 34 of 143

## 7.2. HIGH POWER ENHANCED DATA RATE QPSK MODULATION

## 7.2.1. OUTPUT POWER

#### LIMIT

§15.247 (b) (1)

RSS-247 (5.4) (2)

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

#### TEST PROCEDURE

The transmitter output is connected to a wideband peak and average power meter.

#### **RESULTS**

| ID: 44353 Date: 8/23/16 |
|-------------------------|
|-------------------------|

| Channel | Frequency | Output Power | Limit | Margin |
|---------|-----------|--------------|-------|--------|
|         | (MHz)     | (dBm)        | (dBm) | (dB)   |
| Low     | 2402      | 16.47        | 21    | -4.50  |
| Middle  | 2441      | 16.56        | 21    | -4.41  |
| High    | 2480      | 16.03        | 21    | -4.94  |

Page 35 of 143

## 7.2.2. AVERAGE POWER

#### <u>LIMIT</u>

None; for reporting purposes only.

#### TEST PROCEDURE

The transmitter output is connected to a power meter.

#### **RESULTS**

| ID: | 44353 | Date: | 8/23/16 |
|-----|-------|-------|---------|
|     |       |       |         |

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

| Channel | Frequency | Average Power |
|---------|-----------|---------------|
|         | (MHz)     | (dBm)         |
| Low     | 2402      | 13.73         |
| Middle  | 2441      | 13.90         |
| High    | 2480      | 13.59         |

Page 36 of 143
# 7.3. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION

# 7.3.1. 20 dB AND 99% BANDWIDTH

## <u>LIMIT</u>

None; for reporting purposes only.

## TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to  $\geq$  1% of the 20 dB bandwidth. The VBW is set to  $\geq$  RBW. The sweep time is coupled.

### **RESULTS**

| Channel | Frequency | 20 dB Bandwidth | 99% Bandwidth |
|---------|-----------|-----------------|---------------|
|         | (MHz)     | (KHz)           | (MHz)         |
| Low     | 2402      | 1310.0          | 1.1985        |
| Middle  | 2441      | 1352.0          | 1.2195        |
| High    | 2480      | 1301.0          | 1.2074        |

Page 37 of 143

### 20 dB AND 99% BANDWIDTH





Page 38 of 143



Page 39 of 143

# 7.3.2. HOPPING FREQUENCY SEPARATION

# <u>LIMIT</u>

FCC §15.247 (a) (1)

IC RSS-247 (5.1) (2)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 910 kHz. The sweep time is coupled.

### **RESULTS**

# HOPPING FREQUENCY SEPARATION



Page 40 of 143

# 7.3.3. NUMBER OF HOPPING CHANNELS

## <u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-247 (5.1) (4)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

#### **RESULTS**

Normal Mode: 79 Channels observed.

Page 41 of 143

#### NUMBER OF HOPPING CHANNELS





Page 42 of 143





Page 43 of 143

# 7.3.4. AVERAGE TIME OF OCCUPANCY

## <u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-247 (5.1) (4)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels \* 0.4 s) is equal to 10 \* (# of pulses in 3.16 s) \* pulse width.

# **RESULTS**

# 8PSK (EDR) Mode

| DH Packet | Pulse  | Number of | Average | Limit | Margin |
|-----------|--------|-----------|---------|-------|--------|
|           | Width  | Pulses in | Time of |       | -      |
|           | (msec) | 3.16      | (sec)   | (sec) | (sec)  |
|           |        | seconds   |         |       |        |
| 3DH1      | 0.392  | 30        | 0.118   | 0.4   | -0.282 |
| 3DH3      | 1.642  | 18        | 0.296   | 0.4   | -0.104 |
| 3DH5      | 2.892  | 12        | 0.347   | 0.4   | -0.053 |

Page 44 of 143

## PULSE WIDTH - 3DH1



#### NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - 3DH1



Page 45 of 143

### PULSE WIDTH – 3DH3



## NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD – 3DH3



Page 46 of 143

### PULSE WIDTH – 3DH5



#### NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD – 3DH5



Page 47 of 143

# 7.3.5. OUTPUT POWER

# <u>LIMIT</u>

§15.247 (b) (1)

RSS-247 (5.4) (2)

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

### TEST PROCEDURE

The transmitter output is connected to a wideband peak and average power meter.

#### RESULTS

| <b>ID:</b> 44353 <b>Date:</b> 8/23/16 |
|---------------------------------------|
|---------------------------------------|

| Channel | Frequency | Output Power | Limit | Margin |
|---------|-----------|--------------|-------|--------|
|         | (MHz)     | (dBm)        | (dBm) | (dB)   |
| Low     | 2402      | 16.54        | 21    | -4.43  |
| Middle  | 2441      | 16.64        | 21    | -4.33  |
| High    | 2480      | 16.12        | 21    | -4.85  |

Page 48 of 143

# 7.3.6. AVERAGE POWER

## <u>LIMIT</u>

None; for reporting purposes only.

# TEST PROCEDURE

The transmitter output is connected to a power meter.

#### RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

| ID: | 44353 | Date: | 8/23/16 |
|-----|-------|-------|---------|
|-----|-------|-------|---------|

| Channel | Frequency | Average Power |
|---------|-----------|---------------|
|         | (MHz)     | (dBm)         |
| Low     | 2402      | 13.77         |
| Middle  | 2441      | 13.95         |
| High    | 2480      | 13.64         |

Page 49 of 143

# 7.3.7. CONDUCTED SPURIOUS EMISSIONS

# **LIMITS**

FCC §15.247 (d)

IC RSS-247 (5.5)

Limit = -20 dBc

# TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

### **RESULTS**

Page 50 of 143

### SPURIOUS EMISSIONS, LOW CHANNEL





Page 51 of 143

### SPURIOUS EMISSIONS, MID CHANNEL





Page 52 of 143

### SPURIOUS EMISSIONS, HIGH CHANNEL





Page 53 of 143

#### SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON





Page 54 of 143

# 7.4. LOW POWER BASIC DATA RATE GFSK MODULATION

# 7.4.1. 20 dB AND 99% BANDWIDTH

### <u>LIMIT</u>

None; for reporting purposes only.

## TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to  $\geq$  1% of the 20 dB bandwidth. The VBW is set to  $\geq$  RBW. The sweep time is coupled.

### **RESULTS**

| Channel | Frequency | 20 dB Bandwidth | 99% Bandwidth |
|---------|-----------|-----------------|---------------|
|         | (MHz)     | (KHz)           | (KHz)         |
| Low     | 2402      | 912.9           | 903.29        |
| Middle  | 2441      | 941.2           | 918.43        |
| High    | 2480      | 941.2           | 898.95        |

Page 55 of 143

### 20 dB AND 99% BANDWIDTH





Page 56 of 143



Page 57 of 143

# 7.4.2. HOPPING FREQUENCY SEPARATION

# <u>LIMIT</u>

FCC §15.247 (a) (1)

IC RSS-247 (5.1) (2)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 910 kHz. The sweep time is coupled.

# **RESULTS**

# HOPPING FREQUENCY SEPARATION



Page 58 of 143

# 7.4.3. NUMBER OF HOPPING CHANNELS

## <u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-247 (5.1) (4)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

#### RESULTS

Normal Mode: 79 Channels observed.

Page 59 of 143

#### NUMBER OF HOPPING CHANNELS





Page 60 of 143





Page 61 of 143

# 7.4.4. AVERAGE TIME OF OCCUPANCY

# <u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-247 (5.1) (4)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels \* 0.4 s) is equal to 10 \* (# of pulses in 3.16 s) \* pulse width.

For AFH mode, the average time of occupancy in the specified 8 second period (20 channels \* 0.4 seconds) is equal to 10 \* (# of pulses in 0.8 s) \* pulse width.

### **RESULTS**

| DH Packet                             | Pulse                                              | Number of                                                | Average Time                                            | Limit                        | Margin                              |
|---------------------------------------|----------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|------------------------------|-------------------------------------|
|                                       | Width                                              | Pulses in                                                | of Occupancy                                            |                              |                                     |
|                                       | (msec)                                             | 3.16                                                     | (sec)                                                   | (sec)                        | (sec)                               |
|                                       |                                                    | seconds                                                  |                                                         |                              |                                     |
| GFSK Norma                            | I Mode                                             |                                                          |                                                         |                              |                                     |
| DH1                                   | 0.394                                              | 31                                                       | 0.122                                                   | 0.4                          | -0.278                              |
| DH3                                   | 1.642                                              | 15                                                       | 0.246                                                   | 0.4                          | -0.154                              |
| DH5                                   | 2.896                                              | 13                                                       | 0.376                                                   | 0.4                          | -0.024                              |
|                                       |                                                    |                                                          |                                                         |                              |                                     |
| DH Packet                             | Pulse                                              | Number of                                                | Average Time                                            | Limit                        | Margin                              |
| DH Packet                             | Pulse<br>Width                                     | Number of<br>Pulses in                                   | Average Time<br>of Occupancy                            | Limit                        | Margin                              |
| DH Packet                             | Pulse<br>Width<br>(msec)                           | Number of<br>Pulses in<br>0.8                            | Average Time<br>of Occupancy<br>(sec)                   | Limit<br>(sec)               | Margin<br>(sec)                     |
| DH Packet                             | Pulse<br>Width<br>(msec)                           | Number of<br>Pulses in<br>0.8<br>seconds                 | Average Time<br>of Occupancy<br>(sec)                   | Limit<br>(sec)               | Margin<br>(sec)                     |
| DH Packet<br>GFSK AFH M               | Pulse<br>Width<br>(msec)<br>lode                   | Number of<br>Pulses in<br>0.8<br>seconds                 | Average Time<br>of Occupancy<br>(sec)                   | Limit<br>(sec)               | Margin<br>(sec)                     |
| DH Packet<br>GFSK AFH M<br>DH1        | Pulse<br>Width<br>(msec)<br>Iode<br>0.394          | Number of<br>Pulses in<br>0.8<br>seconds<br>7.75         | Average Time<br>of Occupancy<br>(sec)<br>0.031          | Limit<br>(sec)<br>0.4        | Margin<br>(sec)<br>-0.369           |
| DH Packet<br>GFSK AFH M<br>DH1<br>DH3 | Pulse<br>Width<br>(msec)<br>lode<br>0.394<br>1.642 | Number of<br>Pulses in<br>0.8<br>seconds<br>7.75<br>3.75 | Average Time<br>of Occupancy<br>(sec)<br>0.031<br>0.062 | Limit<br>(sec)<br>0.4<br>0.4 | Margin<br>(sec)<br>-0.369<br>-0.338 |

Page 62 of 143

# PULSE WIDTH - DH1



## NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH1



Page 63 of 143

## PULSE WIDTH – DH3



## NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH3



Page 64 of 143

## PULSE WIDTH – DH5



#### NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH5



Page 65 of 143

# 7.4.5. OUTPUT POWER

# <u>LIMIT</u>

§15.247 (b) (1)

RSS-247 (5.4) (2)

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

## TEST PROCEDURE

The transmitter output is connected to a wideband peak and average power meter.

**RESULTS** 

| ID: | 30606 | Date: | 8/2/16   |
|-----|-------|-------|----------|
|     |       |       | 0, 1, 10 |

| Channel | Frequency | Output Power | Limit | Margin |
|---------|-----------|--------------|-------|--------|
|         | (MHz)     | (dBm)        | (dBm) | (dB)   |
| Low     | 2402      | 11.42        | 30    | -18.58 |
| Middle  | 2441      | 11.85        | 30    | -18.15 |
| High    | 2480      | 11.69        | 30    | -18.31 |

# 7.4.6. AVERAGE POWER

## <u>LIMIT</u>

None; for reporting purposes only.

# TEST PROCEDURE

The transmitter output is connected to a power meter.

#### RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

| ID: | 30606 | Date: | 8/2/16 |
|-----|-------|-------|--------|
|-----|-------|-------|--------|

| Channel | Frequency | Average Power |
|---------|-----------|---------------|
|         | (MHz)     | (dBm)         |
| Low     | 2402      | 11.25         |
| Middle  | 2441      | 11.47         |
| High    | 2480      | 11.37         |

Page 67 of 143

# 7.4.7. CONDUCTED SPURIOUS EMISSIONS

## **LIMITS**

FCC §15.247 (d)

IC RSS-247 (5.5)

Limit = -20 dBc

# TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

### **RESULTS**

Page 68 of 143

### SPURIOUS EMISSIONS, LOW CHANNEL





Page 69 of 143

## SPURIOUS EMISSIONS, MID CHANNEL





Page 70 of 143

# SPURIOUS EMISSIONS, HIGH CHANNEL





Page 71 of 143

#### SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON





UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 72 of 143
# 7.5. LOW POWER ENHANCED DATA RATE QPSK MODULATION

# 7.5.1. OUTPUT POWER

#### LIMIT

§15.247 (b) (1)

RSS-247 (5.4) (2)

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

#### TEST PROCEDURE

The transmitter output is connected to a wideband peak and average power meter.

#### **RESULTS**

| ID: 306 | 06 Date: | 8/2/16 |
|---------|----------|--------|
|---------|----------|--------|

| Channel | Frequency | Output Power | Limit | Margin |
|---------|-----------|--------------|-------|--------|
|         | (MHz)     | (dBm)        | (dBm) | (dB)   |
| Low     | 2402      | 10.75        | 21    | -10.22 |
| Middle  | 2441      | 10.96        | 21    | -10.01 |
| High    | 2480      | 10.89        | 21    | -10.08 |

Page 73 of 143

# 7.5.2. AVERAGE POWER

### <u>LIMIT</u>

None; for reporting purposes only.

## TEST PROCEDURE

The transmitter output is connected to a power meter.

#### RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

| Channel | Frequency | Average Power |
|---------|-----------|---------------|
|         | (MHz)     | (dBm)         |
| Low     | 2402      | 8.28          |
| Middle  | 2441      | 8.44          |
| High    | 2480      | 8.37          |

Page 74 of 143

# 7.6. LOW POWER ENHANCED DATA RATE 8PSK MODULATION

## 7.6.1. 20 dB AND 99% BANDWIDTH

### <u>LIMIT</u>

None; for reporting purposes only.

### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to  $\geq$  1% of the 20 dB bandwidth. The VBW is set to  $\geq$  RBW. The sweep time is coupled.

#### **RESULTS**

| Channel | Frequency | 20 dB Bandwidth | 99% Bandwidth |
|---------|-----------|-----------------|---------------|
|         | (MHz)     | (MHz)           | (MHz)         |
| Low     | 2402      | 1.331           | 1.2330        |
| Middle  | 2441      | 1.358           | 1.2317        |
| High    | 2480      | 1.324           | 1.2309        |

Page 75 of 143

#### 20 dB AND 99% BANDWIDTH





Page 76 of 143



Page 77 of 143

# 7.6.2. HOPPING FREQUENCY SEPARATION

### <u>LIMIT</u>

FCC §15.247 (a) (1)

IC RSS-247 (5.1) (2)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

#### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 910 kHz. The sweep time is coupled.

#### **RESULTS**

#### HOPPING FREQUENCY SEPARATION

| L RF                         | 50 Ω DC<br>1500000 GHz<br>PNO: Wide | SENSE:INT                  | ALIGN AUTO<br>#Avg Type: RMS<br>Avg Hold:>100/100 | 09:14:07 PM Aug 01, 2016<br>TRACE 1 2 3 4 5 6<br>TYPE MWWWW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Frequency                            |
|------------------------------|-------------------------------------|----------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Ref Offse<br>dB/div Ref 30.0 | IFGain:Lov<br>t 10.5 dB<br>10 dBm   | y #Atten: 40 dB            | Δ                                                 | Mkr1 1.000 MHz<br>0.180 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Auto Tune                            |
| 0.0                          |                                     |                            | 1Δ2                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Center Freq<br>2.441500000 GHz       |
| - M. Mah Pahingham           | Ardrah San Harden Albert            | TV-9ACT Mr Thylograph / Ir | when and a straight the start of the              | manaling and a second and the second se |                                      |
| .00                          |                                     |                            |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>Start Freq</b><br>2.439000000 GHz |
| D.0                          |                                     |                            |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stop Freq<br>2.444000000 GHz         |
| 0.0                          |                                     |                            |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CF Step<br>500.000 kHz<br>Auto Man   |
| 0.0                          |                                     |                            |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Freq Offset                          |
| 0.0                          |                                     |                            |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| enter 2.441500 G             | Hz<br>#\/                           |                            | Sween                                             | Span 5.000 MHz<br>2 533 ms (1001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |

Page 78 of 143

# 7.6.3. NUMBER OF HOPPING CHANNELS

### <u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-247 (5.1) (4)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

#### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

#### **RESULTS**

Normal Mode: 79 Channels observed.

Page 79 of 143

#### NUMBER OF HOPPING CHANNELS





Page 80 of 143





Page 81 of 143

# 7.6.4. AVERAGE TIME OF OCCUPANCY

## <u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-247 (5.1) (4)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

#### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels \* 0.4 s) is equal to 10 \* (# of pulses in 3.16 s) \* pulse width.

#### **RESULTS**

#### 8PSK (EDR) Mode

| DH Packet | Pulse<br>Width<br>(msec) | Number of<br>Pulses in<br>3.16<br>seconds | Average<br>Time of<br>(sec) | Limit<br>(sec) | Margin<br>(sec) |
|-----------|--------------------------|-------------------------------------------|-----------------------------|----------------|-----------------|
| 3DH1      | 0.392                    | 31                                        | 0.122                       | 0.4            | -0.278          |
| 3DH3      | 1.076                    | 18                                        | 0.194                       | 0.4            | -0.206          |
| 3DH5      | 2.888                    | 8                                         | 0.231                       | 0.4            | -0.169          |

Page 82 of 143

### PULSE WIDTH - 3DH1



### NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - 3DH1



Page 83 of 143

### PULSE WIDTH – 3DH3



#### NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - 3DH3



Page 84 of 143

#### PULSE WIDTH – 3DH5



#### NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - 3DH5



Page 85 of 143

# 7.6.5. OUTPUT POWER

### <u>LIMIT</u>

§15.247 (b) (1)

RSS-247 (5.4) (2)

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

#### TEST PROCEDURE

The transmitter output is connected to a wideband peak and average power meter.

#### RESULTS

| <b>ID:</b> 30606 <b>Date:</b> 8/2/16 |
|--------------------------------------|
|--------------------------------------|

| Channel | Frequency | Output Power | Limit | Margin |
|---------|-----------|--------------|-------|--------|
|         | (MHz)     | (dBm)        | (dBm) | (dB)   |
| Low     | 2402      | 11.43        | 21    | -9.54  |
| Middle  | 2441      | 11.20        | 21    | -9.77  |
| High    | 2480      | 10.72        | 21    | -10.25 |

Page 86 of 143

# 7.6.6. AVERAGE POWER

### <u>LIMIT</u>

None; for reporting purposes only.

## TEST PROCEDURE

The transmitter output is connected to a power meter.

#### RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

| ID: | 30606 | Date: | 8/2/16 |
|-----|-------|-------|--------|
| ID: | 30606 | Date: | 8/2/16 |

| Channel | Frequency | Average Power |
|---------|-----------|---------------|
|         | (MHz)     | (dBm)         |
| Low     | 2402      | 8.28          |
| Middle  | 2441      | 8.45          |
| High    | 2480      | 8.27          |

Page 87 of 143

# 7.6.7. CONDUCTED SPURIOUS EMISSIONS

### **LIMITS**

FCC §15.247 (d)

IC RSS-247 (5.5)

Limit = -20 dBc

## TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

#### **RESULTS**

Page 88 of 143

#### SPURIOUS EMISSIONS, LOW CHANNEL





Page 89 of 143

#### SPURIOUS EMISSIONS, MID CHANNEL





Page 90 of 143

#### SPURIOUS EMISSIONS, HIGH CHANNEL





Page 91 of 143

#### SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON





Page 92 of 143