16QAM EIRP POWER FOR LTE BAND 12 (10.0MHZ BANDWIDTH)

Company	r.									
Project #		15U21635								
Date:		12/16/2015								
Test Eng		T wang								
Configura		EUT only								
Mode:			16QAM 10MHz I	BW						
	<u>ipment:</u> g: Sunol T899, ion: Dipole S/N			e (s/n 245182-00)	3: SUCOF	LEX 104P	FA)			
f	SG reading	Ant. Pol.						EIRP Limit	Margin	Notes
f MHz	SG reading (dBm)	Ant. Pol.	Cable Loss	Antenna Gain	ERP	EIRP	ERP Limit	EIRP Limit (dBm)	Margin (dB)	Notes
MHz	SG reading (dBm)	Ant. Pol. (H/V)						EIRP Limit (dBm)	Margin (dB)	Notes
MHz	-		Cable Loss	Antenna Gain	ERP	EIRP	ERP Limit		-	Notes
MHz Low Ch	(dBm)	(H/V)	Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	(dBm)	(dB)	Notes
MHz Low Ch 704.00 704.00	(dBm) 9.10	(H/V) V	Cable Loss (dB) 0.55	Antenna Gain (dBd)	ERP (dBm) 8.55	EIRP (dBm) 10.70	ERP Limit (dBm) 34.77	(dBm) 36.99	(dB) -26.3	Notes
MHz Low Ch 704.00 704.00 Mid Ch	(dBm) 9.10 17.85	(H/V) V H	Cable Loss (dB) 0.55 0.55	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 8.55 17.30	EIRP (dBm) 10.70 19.45	ERP Limit (dBm) 34.77 34.77	(dBm) 36.99 36.99	(dB) -26.3 -17.5	Notes
MHz Low Ch 704.00 704.00 Mid Ch 707.50	(dBm) 9.10 17.85 8.95	(H/V) V H	Cable Loss (dB) 0.55 0.55 0.55	Antenna Gain (dBd) 0.0 0.0 0.0	ERP (dBm) 8.55 17.30 8.40	EIRP (dBm) 10.70 19.45 10.55	ERP Limit (dBm) 34.77 34.77 34.77	(dBm) 36.99 36.99 36.99	(dB) -26.3 -17.5 -26.4	Notes
MHz _ow Ch 704.00 704.00 Mid Ch	(dBm) 9.10 17.85	(H/V) V H	Cable Loss (dB) 0.55 0.55	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 8.55 17.30	EIRP (dBm) 10.70 19.45	ERP Limit (dBm) 34.77 34.77	(dBm) 36.99 36.99	(dB) -26.3 -17.5	Notes
MHz Low Ch 704.00 704.00 Mid Ch 707.50 707.50 High Ch	(dBm) 9.10 17.85 8.95 17.73	(H/V) V H V H	Cable Loss (dB) 0.55 0.55 0.55 0.55	Antenna Gain (dBd) 0.0 0.0 0.0 0.0	ERP (dBm) 8.55 17.30 8.40 17.18	EIRP (dBm) 10.70 19.45 10.55 19.33	ERP Limit (dBm) 34.77 34.77 34.77 34.77	(dBm) 36.99 36.99 36.99 36.99 36.99	(dB) -26.3 -17.5 -26.4 -17.7	Notes
MHz Low Ch 704.00 704.00 Mid Ch 707.50	(dBm) 9.10 17.85 8.95	(H/V) V H	Cable Loss (dB) 0.55 0.55 0.55	Antenna Gain (dBd) 0.0 0.0 0.0	ERP (dBm) 8.55 17.30 8.40	EIRP (dBm) 10.70 19.45 10.55	ERP Limit (dBm) 34.77 34.77 34.77	(dBm) 36.99 36.99 36.99	(dB) -26.3 -17.5 -26.4	Notes

Page 721 of 929

9.1.6. LTE BAND 17

QPSK EIRP POWER FOR LTE BAND 17 (5.0MHZ BANDWIDTH)

ompany: roject #: ate: est Engin onfigurati ode:	ion:	15U21635 12/16/2015 T wang EUT only LTE Band 17	QPSK 5MHz BV	V						
_	Sunol T899, a	00022117, 4f	t SMA Cable (s/n 245182-003; : Antenna Gain (dBd)		EIRP (dBm)	-	EIRP Limit (dBm)	Margin (dB)	Notes
Low Ch	(42.1.)	()	(42)	(424)	(42.11)	(42.11)	(4211)	(42.11)	(42)	
706.50	10.09	V	0.55	0.0	9.54	11.69	34.77	36.99	-25.3	
706.50	18.75	Н	0.55	0.0	18.20	20.35	34.77	36.99	-16.6	
Mid Ch										
710.00	10.24	V	0.55	0.0	9.69	11.84	34.77	36.99	-25.2	
710.00	18.95	Н	0.55	0.0	18.40	20.55	34.77	36.99	-16.4	
High Ch										
713.50	10.35	V	0.55	0.0	9.80	11.95	34.77	36.99	-25.0	
713.50	18.77	Н	0.55	0.0	18.22	20.37	34.77	36.99	-16.6	
ev. 10.24.13	}									

Page 722 of 929

16QAM EIRP POWER FOR LTE BAND 17 (5.0MHZ BANDWIDTH)

ompany:										
roject #:		15U21635								
ate:		12/16/2015								
est Engine		Twang								
onfigurati		EUT only								
lode:			IGQAM 5MHz B	N						
est Equipr										
-	Sunol T899, an 1: Dipole S/N: (s/n 245182-003; S	SUCOFLE	X 104PEA)			
-		00022117, 4ft	SMA Cable (s/n 245182-003; s		X 104PEA		EIRP Limit	Margin	Notes
ubstitution	n: Dipole S/N: (00022117, 4ft	SMA Cable (EIRP Limit (dBm)	Margin (dB)	Notes
ubstitutior f	: Dipole S/N: (SG reading	00022117, 4ft Ant. Pol.	SMA Cable (Antenna Gain	ERP	EIRP	ERP Limit		-	Notes
ubstitution f MHz Low Ch 706.50	n: Dipole S/N: (SG reading (dBm) 9.19	00022117, 4ft Ant. Pol. (H/V) V	SMA Cable (Cable Loss (dB)	Antenna Gain (dBd) 0.0	ERP (dBm) 8.64	EIRP (dBm) 10.79	ERP Limit (dBm) 34.77	(dBm) 36.99	(dB) -26.2	Notes
ubstitution f MHz Low Ch	: Dipole S/N: (SG reading (dBm)	00022117, 4ft Ant. Pol. (H/V)	SMA Cable (Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	(dBm)	(dB)	Notes
f MHz Low Ch 706.50 706.50	n: Dipole S/N: (SG reading (dBm) 9.19	00022117, 4ft Ant. Pol. (H/V) V	SMA Cable (Cable Loss (dB)	Antenna Gain (dBd) 0.0	ERP (dBm) 8.64	EIRP (dBm) 10.79	ERP Limit (dBm) 34.77	(dBm) 36.99	(dB) -26.2	Notes
dipstitution f MHz Low Ch 706.50 706.50 Mid Ch	n: Dipole S/N: (SG reading (dBm) 9,19 17.79	00022117, 4ft Ant. Pol. (H/V) V H	Cable Loss (dB) 0.55 0.55	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 8.64 17.24	EIRP (dBm) 10.79 19.39	ERP Limit (dBm) 34.77 34.77	(dBm) 36.99 36.99	(dB) -26.2 -17.6	Notes
tion tion tion tion tion tion tion tion	2: Dipole S/N: 0 SG reading (dBm) 9.19 17.79 9.14	00022117, 4ft Ant. Pol. (H/V) V H	Cable Loss (dB) 0.55 0.55	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 8.64 17.24 8.59	EIRP (dBm) 10.79 19.39	ERP Limit (dBm) 34.77 34.77 34.77	(dBm) 36.99 36.99 36.99	(dB) -26.2 -17.6 -26.3	Notes
dipstitution f MHz Low Ch 706.50 706.50 Mid Ch	n: Dipole S/N: (SG reading (dBm) 9,19 17.79	00022117, 4ft Ant. Pol. (H/V) V H	Cable Loss (dB) 0.55 0.55	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 8.64 17.24	EIRP (dBm) 10.79 19.39	ERP Limit (dBm) 34.77 34.77	(dBm) 36.99 36.99	(dB) -26.2 -17.6	Notes
ubstitution f MHz Low Ch 706.50 706.50 Mid Ch 710.00 710.00 High Ch	n: Dipole S/N: (SG reading (dBm) 9.19 17.79 9.14 18.05	00022117, 4ft Ant. Pol. (H/V) V H V H	SMA Cable (s Cable Loss (dB) 0.55 0.55 0.55 0.55	Antenna Gain (dBd) 0.0 0.0 0.0 0.0	ERP (dBm) 8.64 17.24 8.59 17.50	EIRP (dBm) 10.79 19.39 10.74 19.65	ERP Limit (dBm) 34.77 34.77 34.77 34.77	(dBm) 36.99 36.99 36.99 36.99 36.99	(dB) -26.2 -17.6 -26.3 -17.3	Notes
r the second sec	2: Dipole S/N: 0 SG reading (dBm) 9.19 17.79 9.14	00022117, 4ft Ant. Pol. (H/V) V H	Cable Loss (dB) 0.55 0.55	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 8.64 17.24 8.59	EIRP (dBm) 10.79 19.39	ERP Limit (dBm) 34.77 34.77 34.77	(dBm) 36.99 36.99 36.99	(dB) -26.2 -17.6 -26.3	Notes

Page 723 of 929

QPSK EIRP POWER FOR LTE BAND 17 (10.0MHZ BANDWIDTH)

oject #: 15U21635 te: 12/16/2015 st Engineer: T wang onfiguration: EUT only	configuratio lode: <u>est Equipm</u> leceiving: S	er: . n: .	12/16/2015 T wang EUT only LTE Band 17 (w						
te: 12/16/2015 st Engineer: T wang unfiguration: EUT only ode: LTE Band 17 QPSK 10MHz BW st Equipment: LTE Band 17 QPSK 10MHz BW sceiving: Sunol T899, and Chamber G Cable bistitution: Dipole S/N: 00022117, 4ft SMA Cable (s/n 245182-003; SUCOFLEX 104PEA) f SG reading (dBm) Ant. Pol. (H/V) Cable Loss Antenna Gain MHz ERP (dBm) ERP Limit (dBm) EIRP Limit (dBm) Margin (dBm) Notes 710.00 10.04 V 0.55 0.0 9.49 11.64 34.77 36.99 -25.4 710.00 19.02 H 0.55 0.0 18.47 20.62 34.77 36.99 -16.4	Pate: est Engined configuratio lode: <u>est Equipm</u> receiving: S	er: . n: .	12/16/2015 T wang EUT only LTE Band 17 (W						
st Engineer: T wang onfiguration: EUT only ode: LTE Band 17 QPSK 10MHz BW st Equipment: sectiving: Sunol T899, and Chamber G Cable ibstitution: Dipole S/N: 00022117, 4ft SMA Cable (s/n 245182-003; SUCOFLEX 104PEA) f SG reading Ant. Pol. Cable Loss Antenna Gain ERP EIRP ERP Limit EIRP Limit Margin (dBm) (dBm	est Engine configuratio lode: <u>est Equipm</u> eceiving: S	er:	T wang EUT only LTE Band 17 (W						
Infiguration: EUT only LTE Band 17 QPSK 10MHz BW st Equipment: LTE Band 17 QPSK 10MHz BW st Equipment: Support stectiving: Sunol T899, and Chamber G Cable ibstitution: Dipole S/N: 00022117, 4ft SMA Cable (s/n 245182-003; SUCOFLEX 104PEA) f SG reading (dBm) Ant. Pol. (H/V) Cable Loss Antenna Gain (dBd) ERP (dBm) EIRP init (dBm) EIRP Limit (dBm) Margin (dBm) Notes 710.00 10.04 V 0.55 0.0 9.49 11.64 34.77 36.99 -25.4 710.00 19.02 H 0.55 0.0 18.47 20.62 34.77 36.99 -16.4	onfiguratio ode: <u>est Equipm</u> eceiving: S	n: <u>ent:</u>	EUT only LTE Band 17 (W						
bde: LTE Band 17 QPSK 10MHz BW st Equipment: sceiving: Sunol T899, and Chamber G Cable bstitution: Dipole S/N: 00022117, 4ft SMA Cable (s/n 245182-003; SUCOFLEX 104PEA) f SG reading Ant. Pol. Cable Loss Antenna Gain ERP EIRP ERP Limit (dBm) (dBm) ERP Limit (dBm) (dB) Notes f10.00 10.04 V 0.55 0.0 9.49 11.64 34.77 36.99 -25.4 710.00 19.02 H 0.55 0.0 18.47 20.62 34.77 36.99 -16.4	ode: est Equipm eceiving: S	ent:	LTE Band 17 (W						
st Equipment: receiving: Sunol T899, and Chamber G Cable bstitution: Dipole S/N: 00022117, 4ft SMA Cable (s/n 245182-003; SUCOFLEX 104PEA) f SG reading (dBm) Ant. Pol. (H/V) Cable Loss (dB) Antenna Gain (dBm) ERP (dBm) ERP Limit (dBm) EIRP Limit (dBm) Margin (dBm) Notes 710.00 10.04 V 0.55 0.0 9.49 11.64 34.77 36.99 -25.4 710.00 19.02 H 0.55 0.0 18.47 20.62 34.77 36.99 -16.4	est Equipm eceiving: S	ent:			vv						
ceiving: Sunol T899, and Chamber G Cable bstitution: Dipole S/N: 00022117, 4ft SMA Cable (s/n 245182-003; SUCOFLEX 104PEA) f SG reading (dBm) Ant. Pol. (H/V) Cable Loss (dB) Antenna Gain (dBd) ERP (dBm) ERP Limit (dBm) EIRP Limit (dBm) Margin (dBm) Notes 710.00 10.04 V 0.55 0.0 9.49 11.64 34.77 36.99 -25.4 710.00 19.02 H 0.55 0.0 18.47 20.62 34.77 36.99 -16.4	ceiving: S		d Chamber	G Cable							
f MHzSG reading (dBm)Ant. Pol. (H/V)Cable Loss (dB)Antenna Gain (dBd)ERP (dBm)EIRP (dBm)EIRP Limit (dBm)Margin (dBm)Notes710.0010.04V0.550.09.4911.6434.7736.99-25.4710.0019.02H0.550.018.4720.6234.7736.99-16.4				G Cable							
MHz (dBm) (H/V) (dB) (dBd) (dBm) (d	ubstitution	Dipole S/N: 0			s/n 245182-003; :	SUCOFLE	X 104PEA)			
MHz (dBm) (H/V) (dB) (dBd) (dBm) (d	f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	ERP	EIRP	ERP Limit	EIRP Limit	Margin	Notes
710.00 19.02 H 0.55 0.0 18.47 20.62 34.77 36.99 -16.4	1	-									
710.00 19.02 H 0.55 0.0 18.47 20.62 34.77 36.99 -16.4	740.00	40.04		0.55			44.04	04.77	20.00	or 1	
	······	13.02		0.00		10.41	20.02		50.55	-10.4	

Page 724 of 929

16QAM EIRP POWER FOR LTE BAND 17 (10.0MHZ BANDWIDTH)

Company: Project #: 15U21635 Date: 12/16/2015 Fest Engineer: T wang Configuration: EUT only Mode: LTE Band 17 16QAM 10MHz BW	
Date: 12/16/2015 Fest Engineer: T wang Configuration: EUT only	
Test Engineer: T wang Configuration: EUT only	
Configuration: EUT only	
Ibstitution: Dipole S/N: 00022117, 4ft SMA Cable (s/n 245182-003; SUCOFLEX 104PEA) f SG reading Ant. Pol. Cable Loss Antenna Gain ERP EIRP ERP Limit EIRP Limit Margin MHz (dBm) (H/V) (dB) (dBd) (dBm) (dBm) (dBm) (dBm) (dBm) (dB)	Notes
MHz (dBm) (H/V) (dB) (dBd) (dBm) (dBm) (dBm) (dBm) (dBm)	
710.00 9.14 V 0.55 0.0 8.59 10.74 34.77 36.99 -26.3	
710.00 18.15 H 0.55 0.0 17.60 19.75 34.77 36.99 -17.2	

Page 725 of 929

9.1.7. LTE BAND 25

QPSK EIRP POWER FOR LTE BAND 25 (1.4MHZ BANDWIDTH)

Company								
Project #:		15U21635						
Date:		12/11/2015						
Test Engi	neer:	Twang						
Configura		EUT only						
Node:			PSK 1.4MHz BW					
Substituti	on: Horn T59 S	Substitution, 4	lft SMA Cable (s	/n 245182-003; SUC	OFLEX 104PE	EA)		
f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
f GHz		-				-	Margin EIRP (dB)	Notes
f GHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	-	Notes
f GHz Low Ch 1.851 1.851	SG reading (dBm) 16.3	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 8.05	EIRP (dBm) 23.39	Limit (dBm) 33.0	(dB) -9.6	Notes
f GHz 1.851 1.851 Mid Ch	SG reading (dBm) 16.3 16.9	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 23.39 23.93	Limit (dBm) 33.0 33.0	(dB) -9.6 -9.1	Notes
f GHz Low Ch 1.851 1.851 Mid Ch 1.883	SG reading (dBm) 16.3 16.9 16.6	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 23.39 23.93 23.66	Limit (dBm) 33.0 33.0 33.0	(dB) -9.6 -9.1 -9.3	Notes
f GHz 1.851 1.851 Mid Ch	SG reading (dBm) 16.3 16.9	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 23.39 23.93	Limit (dBm) 33.0 33.0	(dB) -9.6 -9.1	Notes
f GHz Low Ch 1.851 1.851 Mid Ch 1.883	SG reading (dBm) 16.3 16.9 16.6	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 23.39 23.93 23.66	Limit (dBm) 33.0 33.0 33.0	(dB) -9.6 -9.1 -9.3	Notes
f GHz Low Ch 1.851 1.851 Mid Ch 1.883 1.883	SG reading (dBm) 16.3 16.9 16.6	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 23.39 23.93 23.66	Limit (dBm) 33.0 33.0 33.0	(dB) -9.6 -9.1 -9.3	Notes

Page 726 of 929

16QAM EIRP POWER FOR LTE BAND 25 (1.4MHZ BANDWIDTH)

ompany:								
roject #:		15U21635						
ate:		12/11/2015						
est Engi	neer:	T wang						
onfigura		EUT only						
lode:			6QAM 1.4MHz BW					
			H SMA Cables 4ft SMA Cable (s	s/n 245182-003; SUC	OFLEX 104PE	EA)		
ubstituti f	on: Horn T59 S	Substitution, 4 Ant. Pol.	4ft SMA Cable (s	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
ubstituti f GHz	on: Horn T59 S	Substitution, 4	4ft SMA Cable (s				Margin EIRP (dB)	Notes
ubstituti f	on: Horn T59 S	Substitution, 4 Ant. Pol.	4ft SMA Cable (s	Antenna Gain	EIRP	Limit		Notes
ubstituti f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
ubstituti f GHz Low Ch 1.851 1.851	on: Horn T59 S SG reading (dBm) 15.5	Ant. Pol. (H/V) V	4ft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 22.59	Limit (dBm) 33.0	(dB) -10.4	Notes
dbstituti f GHz Low Ch 1.851 1.851 Mid Ch	on: Horn T59 S SG reading (dBm) 15.5 15.9	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 22.59 23.01	Limit (dBm) 33.0 33.0	(dB) -10.4 -10.0	Notes
ubstituti f GHz Low Ch 1.851 1.851	on: Horn T59 S SG reading (dBm) 15.5	Ant. Pol. (H/V) V	4ft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 22.59	Limit (dBm) 33.0	(dB) -10.4	Notes
ubstituti f GHz Low Ch 1.851 1.851 Mid Ch 1.883 1.883	on: Horn T59 \$ SG reading (dBm) 15.5 15.9 15.5	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 22.59 23.01 22.56	Limit (dBm) 33.0 33.0 33.0	(dB) -10.4 -10.0 -10.4	Notes
ubstituti f GHz Low Ch 1.851 1.851 Mid Ch 1.883	on: Horn T59 \$ SG reading (dBm) 15.5 15.9 15.5	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 22.59 23.01 22.56	Limit (dBm) 33.0 33.0 33.0	(dB) -10.4 -10.0 -10.4	Notes

Page 727 of 929

QPSK EIRP POWER FOR LTE BAND 25 (3.0MHZ BANDWIDTH)

ompany:								
roject #:		15U21635						
ate:		12/11/2015						
est Engi	neer:	T wang						
onfigura	tion:	EUT only						
lode:		LTE Band 25 Q	PSK 3MHz BW					
-			H SMA Cables 4ft SMA Cable (s	s/n 245182-003; SUC	OFLEX 104PE	A)		
-				s/n 245182-003; SUC Antenna Gain (dBi)	OFLEX 104PE EIRP (dBm)	A) Limit (dBm)	Margin EIRP (dB)	Notes
ubstituti	on: Horn T59 S	Ant. Pol.	ft SMA Cable (s	Antenna Gain	EIRP	Limit		Notes
f GHz Low Ch 1.852	on: Horn T59 S SG reading (dBm) 16.4	Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 23.49	Limit (dBm) 33.0	(dB) -9.5	Notes
ubstituti f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.852 1.852	on: Horn T59 S SG reading (dBm) 16.4	Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 23.49	Limit (dBm) 33.0	(dB) -9.5	Notes
f GHz Low Ch 1.852	on: Horn T59 S SG reading (dBm) 16.4	Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 23.49	Limit (dBm) 33.0	(dB) -9.5	Notes
f GHz Low Ch 1.852 1.852 Mid Ch	on: Horn T59 S SG reading (dBm) 16.4 17.0	Substitution, 4 Ant. Pol. (H/V) V H	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 23.49 24.03	Limit (dBm) 33.0 33.0	(dB) 	Notes
f GHz Low Ch 1.852 1.852 Mid Ch 1.883 1.883	on: Horn T59 S SG reading (dBm) 16.4 17.0 16.5	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.98 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 23.49 24.03 23.56	Limit (dBm) 33.0 33.0 33.0	(dB) .9.5 .9.0 .9.4	Notes
dbstituti f GHz Low Ch 1.852 1.852 Mid Ch 1.883	on: Horn T59 S SG reading (dBm) 16.4 17.0 16.5	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.98 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 23.49 24.03 23.56	Limit (dBm) 33.0 33.0 33.0	(dB) .9.5 .9.0 .9.4	Notes

Page 728 of 929

16QAM EIRP POWER FOR LTE BAND 25 (3.0MHZ BANDWIDTH)

ompany:								
roject #:		15U21635						
ate:		12/11/2015						
est Engi	neer:	T wang						
onfigura		EUT only						
ode:			6QAM 3MHz BW					
	: Horn T863, a on: Horn T59 S			/n 245182-003; SUC	OFLEX 104PE	A)		
				/n 245182-003; SUC Antenna Gain (dBi)	OFLEX 104PE EIRP (dBm)	A) Limit (dBm)	Margin EIRP (dB)	Notes
f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.852	on: Horn T59 S SG reading (dBm) 15.4	Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi) 8.05	EIRP (dBm) 22.49	Limit (dBm) 33.0	(dB) -10.5	Notes
f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.852 1.852	on: Horn T59 S SG reading (dBm) 15.4	Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi) 8.05	EIRP (dBm) 22.49	Limit (dBm) 33.0	(dB) -10.5	Notes
f GHz Low Ch 1.852	on: Horn T59 S SG reading (dBm) 15.4	Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi) 8.05	EIRP (dBm) 22.49	Limit (dBm) 33.0	(dB) -10.5	Notes
f GHz Low Ch 1.852 1.852 Mid Ch	on: Horn T59 S SG reading (dBm) 15.4 16.0	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 22.49 23.03	Limit (dBm) 33.0 33.0	(dB) -10.5 -10.0	Notes
f GHz Low Ch 1.852 1.852 Mid Ch 1.883 1.883	on: Horn T59 S SG reading (dBm) 15.4 16.0 15.7	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 22.49 23.03 22.76	Limit (dBm) 33.0 33.0 33.0	(dB) -10.5 -10.0 -10.2	Notes
f GHz Low Ch 1.852 1.852 Mid Ch 1.883	on: Horn T59 S SG reading (dBm) 15.4 16.0 15.7	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 22.49 23.03 22.76	Limit (dBm) 33.0 33.0 33.0	(dB) -10.5 -10.0 -10.2	Notes

Page 729 of 929

QPSK EIRP POWER FOR LTE BAND 25 (5.0MHZ BANDWIDTH)

Company:								
Project #:		15U21635						
)ate:		12/11/2015						
lest Engi	neer:	T wang						
Configura	tion:	EUT only						
lode:		LTE Band 25 Q	PSK 5MHz BW					
	: Horn T863. a	nd Chamber	H SMA Cables					
	on: Horn T59 S	Substitution, 4	H SMA Cables Ift SMA Cable (s Cable Loss	s/n 245182-003; SUC Antenna Gain			Margin EIRP	Notes
Receiving Substituti			ft SMA Cable (s		OFLEX 104PE EIRP (dBm)	A) Limit (dBm)	Margin EIRP (dB)	Notes
Receiving Substituti	on: Horn T59 S SG reading	Substitution, 4 Ant. Pol.	ft SMA Cable (s	Antenna Gain	EIRP	Limit		Notes
Receiving Substituti f GHz Low Ch 1.853	on: Horn T59 S SG reading (dBm) 16.6	Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 23.69	Limit (dBm) 33.0	(dB)	Notes
Receiving Substituti f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
Receiving Substituti GHz Low Ch 1.853 1.853	on: Horn T59 S SG reading (dBm) 16.6	Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 23.69	Limit (dBm) 33.0	(dB)	Notes
Receiving Substituti f GHz Low Ch 1.853 1.853 Mid Ch	on: Horn T59 \$ SG reading (dBm) 16.6 17.4	Substitution, 4 Ant. Pol. (H/V) V H	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 23.69 24.46	Limit (dBm) 33.0 33.0	(dB)	Notes
Receiving Substituti GHz Low Ch 1.853 1.853	on: Horn T59 S SG reading (dBm) 16.6	Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 23.69	Limit (dBm) 33.0	(dB)	Notes
Receiving Substituti f GHz Low Ch 1.853 1.853 Mid Ch 1.883 1.883	SG reading (dBm) 16.6 17.4 16.3	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 23.69 24.46 23.36	Limit (dBm) 33.0 33.0 33.0	(dB) -9.3 -8.5 -9.6	Notes
Receiving Substituti f GHz Low Ch 1.853 1.853 Mid Ch 1.883	SG reading (dBm) 16.6 17.4 16.3	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 23.69 24.46 23.36	Limit (dBm) 33.0 33.0 33.0	(dB) -9.3 -8.5 -9.6	Notes

Page 730 of 929

16QAM EIRP POWER FOR LTE BAND 25 (5.0MHZ BANDWIDTH)

ompany:								
roject #:		15U21635						
ate:		12/11/2015						
est Engi	neer:	T wang						
onfigura		EUT only						
lode:			6QAM 5MHz BW					
			H SMA Cables 4ft SMA Cable (s	/n 245182-003; SUC	OFLEX 104PE	EA)		
	on: Horn T59 S SG reading	Substitution, 4		/n 245182-003; SUC Antenna Gain (dBi)	EIRP	Limit	Margin EIRP (dB)	Notes
ubstituti f	on: Horn T59 S	Substitution, 4	4ft SMA Cable (s Cable Loss	Antenna Gain			-	Notes
f GHz Low Ch 1.853	on: Horn T59 S SG reading (dBm) 15.7	Substitution, 4 Ant. Pol. (H/V) V	4ft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 22.79	Limit (dBm) 33.0	(dB) -10.2	Notes
ubstituti f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.853 1.853	on: Horn T59 S SG reading (dBm) 15.7	Substitution, 4 Ant. Pol. (H/V) V	4ft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 22.79	Limit (dBm) 33.0	(dB) -10.2	Notes
f GHz Low Ch 1.853 1.853 Mid Ch	on: Horn T59 S SG reading (dBm) 15.7 16.3	Substitution, 4 Ant. Pol. (H/V) V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 22.79 23.33	Limit (dBm) 33.0 33.0	(dB) -10.2 -9.7	Notes
f GHz Low Ch 1.853 1.853	on: Horn T59 S SG reading (dBm) 15.7	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 22.79	Limit (dBm) 33.0	(dB) -10.2	Notes
dbstituti f GHz Low Ch 1.853 1.853 Mid Ch 1.883 1.883	on: Horn T59 \$ SG reading (dBm) 15.7 16.3 15.4	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 22.79 23.33 22.46	Limit (dBm) 33.0 33.0 33.0	(dB) -10.2 -9.7 -10.5	Notes
dbstituti f GHz Low Ch 1.853 1.853 Mid Ch 1.883	on: Horn T59 \$ SG reading (dBm) 15.7 16.3 15.4	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 22.79 23.33 22.46	Limit (dBm) 33.0 33.0 33.0	(dB) -10.2 -9.7 -10.5	Notes

Page 731 of 929

QPSK EIRP POWER FOR LTE BAND 25 (10.0MHZ BANDWIDTH)

company:								
Project #:		15U21635						
)ate:		12/11/2015						
lest Engi	neer:	Twang						
Configura		EUT only						
/lode:			PSK 10MHz BW					
eceiving ubstituti	on: Horn T59 S	Substitution, 4		s/n 245182-003; SUC				
-				s/n 245182-003; SUC Antenna Gain (dBi)	OFLEX 104PE EIRP (dBm)	EA) Limit (dBm)	Margin EIRP (dB)	Notes
Receiving Substituti f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
Receiving Substituti f GHz Low Ch 1.855	on: Horn T59 S SG reading (dBm) 16.5	Ant. Pol. (H/V)	tft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 23.59	Limit (dBm) 33.0	(dB)	Notes
Receiving Substituti f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
Receiving Substituti f GHz Low Ch 1.855	on: Horn T59 S SG reading (dBm) 16.5	Ant. Pol. (H/V)	tft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 23.59	Limit (dBm) 33.0	(dB)	Notes
Receiving Substituti GHz Low Ch 1.855 1.855	on: Horn T59 S SG reading (dBm) 16.5	Ant. Pol. (H/V)	tft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 23.59	Limit (dBm) 33.0	(dB)	Notes
Receiving Substituti f GHz Low Ch 1.855 1.855 Mid Ch	on: Horn T59 S SG reading (dBm) 16.5 17.0	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 23.59 24.03	Limit (dBm) 33.0 33.0	(dB) -9.4 -9.0	Notes
Receiving Substituti f GHz Low Ch 1.855 1.855 Mid Ch 1.883 1.883	on: Horn T59 \$ SG reading (dBm) 16.5 17.0 16.6	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 23.59 24.03 23.66	Limit (dBm) 33.0 33.0 33.0	(dB) -9.4 -9.0 -9.3	Notes
Receiving Substituti f GHz Low Ch 1.855 1.855 Mid Ch 1.883	on: Horn T59 \$ SG reading (dBm) 16.5 17.0 16.6	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 23.59 24.03 23.66	Limit (dBm) 33.0 33.0 33.0	(dB) -9.4 -9.0 -9.3	Notes

Page 732 of 929

16QAM EIRP POWER FOR LTE BAND 25 (10.0MHZ BANDWIDTH)

company:								
Project #:		15U21635						
)ate:		12/11/2015						
lest Engi		T wang						
Configura		EUT only						
/lode:		LTE Band 25 16	6QAM 10MHz BW					
ubstituti			H SMA Cables 4ft SMA Cable (s	/n 245182-003; SUC	OFLEX 104PE	A)		
f	on: Horn T59 S	Substitution, 4 Ant. Pol.	4ft SMA Cable (s Cable Loss	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
f GHz	on: Horn T59 S	Substitution, 4	4ft SMA Cable (s			-	Margin EIRP (dB)	Notes
f	on: Horn T59 S	Substitution, 4 Ant. Pol.	4ft SMA Cable (s Cable Loss	Antenna Gain	EIRP	Limit	-	Notes
f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.855 1.855	on: Horn T59 S SG reading (dBm) 15.5	Substitution, 4 Ant. Pol. (H/V) V	4ft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 22.59	Limit (dBm) 33.0	(dB) -10.4	Notes
f GHz Low Ch 1.855 1.855 Mid Ch	on: Horn T59 \$ SG reading (dBm) 15.5 16.1	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 22.59 23.13	Limit (dBm) 33.0 33.0	(dB) -10.4 -9.9	Notes
f GHz Low Ch 1.855 1.855 Mid Ch 1.883	on: Horn T59 \$ SG reading (dBm) 15.5 16.1 15.5	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 22.59 23.13 22.56	Limit (dBm) 33.0 33.0 33.0	(dB) -10.4 -9.9 -10.4	Notes
f GHz Low Ch 1.855 1.855 Mid Ch	on: Horn T59 \$ SG reading (dBm) 15.5 16.1	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 22.59 23.13	Limit (dBm) 33.0 33.0	(dB) -10.4 -9.9	Notes
f GHz Low Ch 1.855 1.855 Mid Ch 1.883 1.883 High Ch	on: Horn T59 \$ SG reading (dBm) 15.5 16.1 15.5 16.2	Substitution, 4 Ant. Pol. (H/V) V H V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03 8.03	EIRP (dBm) 22.59 23.13 22.56 23.22	Limit (dBm) 33.0 33.0 33.0 33.0	(dB) -10.4 -9.9 -10.4 -9.8	Notes
f GHz Low Ch 1.855 1.855 Mid Ch 1.883 1.883	on: Horn T59 \$ SG reading (dBm) 15.5 16.1 15.5	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 22.59 23.13 22.56	Limit (dBm) 33.0 33.0 33.0	(dB) -10.4 -9.9 -10.4	Notes

Page 733 of 929

QPSK EIRP POWER FOR LTE BAND 25 (15.0MHZ BANDWIDTH)

Company:								
roject #:		15U21635						
ate:		12/11/2015						
lest Engi		T wang						
Configura		EUT only						
/ode:			PSK 15MHz BW					
eceiving			H SMA Cables					
Substituti	on: Horn T59 S	Substitution, 4 Ant. Pol.	4ft SMA Cable (s Cable Loss	s/n 245182-003; SUC Antenna Gain	EIRP	Limit	Margin EIRP	Notes
Receiving Substituti f GHz	on: Horn T59 S	Substitution, 4	4ft SMA Cable (s				Margin EIRP (dB)	Notes
Receiving Substituti f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol.	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
Receiving Substituti f GHz	on: Horn T59 S	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss	Antenna Gain	EIRP	Limit		Notes
Receiving Substituti GHz Low Ch 1.858 1.858	on: Horn T59 S SG reading (dBm) 16.3	Substitution, 4 Ant. Pol. (H/V) V	tft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi) 8.04	EIRP (dBm) 23.38	Limit (dBm) 33.0	(dB) -9.6	Notes
Receiving Substituti f GHz Low Ch 1.858 1.858 Mid Ch	SG reading (dBm) 16.3 17.2	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04	EIRP (dBm) 23.38 24.22	Limit (dBm) 33.0 33.0	(dB)	Notes
Receiving Substituti f GHz Low Ch 1.858 1.858 Mid Ch 1.883	SG reading (dBm) 16.3 17.2 16.4	Substitution, 4 Ant. Pol. (H/V) V	tft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi) 8.04	EIRP (dBm) 23.38 24.22 23.46	Limit (dBm) 33.0 33.0 33.0	(dB) -9.6	Notes
Receiving Substituti f GHz Low Ch 1.858 1.858 Mid Ch 1.883 1.883	SG reading (dBm) 16.3 17.2	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 23.38 24.22	Limit (dBm) 33.0 33.0	(dB) -9.6 -8.8 -9.5	Notes
Receiving Substituti f GHz Low Ch 1.858 1.858 Mid Ch 1.883	SG reading (dBm) 16.3 17.2 16.4	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 23.38 24.22 23.46	Limit (dBm) 33.0 33.0 33.0	(dB) -9.6 -8.8 -9.5	Notes

Page 734 of 929

16QAM EIRP POWER FOR LTE BAND 25 (15.0MHZ BANDWIDTH)

_								
Company:								
Project #:		15U21635						
Date:		12/11/2015						
lest Engi		T wang						
Configura		EUT only						
/lode:		LTE Band 25 16	6QAM 15MHz BW					
			H SMA Cables 4ft SMA Cable (s	n 245182-003: SUC	OFI EX 104PE	A)		
Substituti	on: Horn T59 S	Substitution, 4	4ft SMA Cable (s Cable Loss	s/n 245182-003; SUC Antenna Gain (dBi)	EIRP	Limit	Margin EIRP	Notes
Substituti f GHz	on: Horn T59 S	Substitution, 4	4ft SMA Cable (s				Margin EIRP (dB)	Notes
Substituti	on: Horn T59 S	Substitution, 4	4ft SMA Cable (s Cable Loss	Antenna Gain	EIRP	Limit		Notes
Substituti f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.858 1.858	on: Horn T59 S SG reading (dBm) 15.4	Substitution, 4 Ant. Pol. (H/V) V	tft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.04	EIRP (dBm) 22.48	Limit (dBm) 33.0	(dB)	Notes
f GHz Low Ch 1.858 1.858 Mid Ch	on: Horn T59 S SG reading (dBm) 15.4 16.1	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04	EIRP (dBm) 22.48 23.12	Limit (dBm) 33.0 33.0	(dB) -10.5 -9.9	Notes
f GHz Low Ch 1.858 1.858 Mid Ch 1.883	on: Horn T59 \$ SG reading (dBm) 15.4 16.1 16.5	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 22.48 23.12 23.56	Limit (dBm) 33.0 33.0 33.0	(dB) -10.5 -9.9 -9.4	Notes
f GHz Low Ch 1.858 1.858 Mid Ch	on: Horn T59 S SG reading (dBm) 15.4 16.1	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04	EIRP (dBm) 22.48 23.12	Limit (dBm) 33.0 33.0	(dB) -10.5 -9.9	Notes
f GHz Low Ch 1.858 1.858 Mid Ch 1.883 1.883 High Ch	on: Horn T59 \$ SG reading (dBm) 15.4 16.1 16.5 16.2	Substitution, 4 Ant. Pol. (H/V) V H V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03 8.03	EIRP (dBm) 22.48 23.12 23.56 23.22	Limit (dBm) 33.0 33.0 33.0 33.0 33.0	(dB) -10.5 -9.9 -9.4 -9.8	Notes
f GHz Low Ch 1.858 1.858 Mid Ch 1.883 1.883	on: Horn T59 \$ SG reading (dBm) 15.4 16.1 16.5	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 22.48 23.12 23.56	Limit (dBm) 33.0 33.0 33.0	(dB) -10.5 -9.9 -9.4	Notes

Page 735 of 929

QPSK EIRP POWER FOR LTE BAND 25 (20.0MHZ BANDWIDTH)

company:		451104625						
Project #:		15U21635						
)ate:		12/11/2015						
lest Engi		T wang						
Configura		EUT only						
/lode:		LTE Band 25 Q	PSK 20MHz BW					
-			H SMA Cables 4ft SMA Cable (s	s/n 245182-003; SUC	OFLEX 104PE	EA)		
-				s/n 245182-003; SUC Antenna Gain (dBi)	OFLEX 104PE EIRP (dBm)	EA) Limit (dBm)	Margin EIRP (dB)	Notes
Substituti f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.860	on: Horn T59 S SG reading (dBm) 16.1	Substitution, 4 Ant. Pol. (H/V) V	tft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.04	EIRP (dBm) 23.18	Limit (dBm) 33.0	(dB) -9.8	Notes
Substituti f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.860	on: Horn T59 S SG reading (dBm) 16.1	Substitution, 4 Ant. Pol. (H/V) V	tft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.04	EIRP (dBm) 23.18	Limit (dBm) 33.0	(dB) -9.8	Notes
f GHz Low Ch 1.860 1.860	on: Horn T59 S SG reading (dBm) 16.1	Substitution, 4 Ant. Pol. (H/V) V	tft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.04	EIRP (dBm) 23.18	Limit (dBm) 33.0	(dB) -9.8	Notes
f GHz Low Ch 1.860 1.860 Mid Ch	on: Horn T59 \$ SG reading (dBm) 16.1 17.0	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04	EIRP (dBm) 23.18 24.04	Limit (dBm) 33.0 33.0	(dB) -9.8 -9.0	Notes
f GHz Low Ch 1.860 1.860 Mid Ch 1.883 1.883	on: Horn T59 \$ SG reading (dBm) 16.1 17.0 16.3	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 23.18 24.04 23.36	Limit (dBm) 33.0 33.0 33.0	(dB) -9.8 -9.0 -9.6	Notes
f GHz Low Ch 1.860 1.860 Mid Ch 1.883	on: Horn T59 \$ SG reading (dBm) 16.1 17.0 16.3	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 23.18 24.04 23.36	Limit (dBm) 33.0 33.0 33.0	(dB) -9.8 -9.0 -9.6	Notes

Page 736 of 929

16QAM EIRP POWER FOR LTE BAND 25 (20.0MHZ BANDWIDTH)

company:								
Project #:		15U21635						
)ate:		12/11/2015						
lest Engi		T wang						
Configura	tion:	EUT only						
/lode:		LTE Band 25 16	6QAM 20MHz BW					
			H SMA Cables 4ft SMA Cable (s	s/n 245182-003; SUC	OFLEX 104PE	EA)		
Receiving				s/n 245182-003; SUC Antenna Gain	OFLEX 104PE	A)	Margin EIRP	Notes
Receiving Substituti	on: Horn T59 S	Substitution, 4	4ft SMA Cable (s				Margin EIRP (dB)	Notes
Receiving Substituti f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
Receiving Substituti f GHz Low Ch 1.860	on: Horn T59 S SG reading (dBm) 15.3	Substitution, 4 Ant. Pol. (H/V) V	4ft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.04	EIRP (dBm) 22.38	Limit (dBm) 33.0	(dB) -10.6	Notes
Receiving Substituti f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
Receiving Substituti GHz Low Ch 1.860 1.860	on: Horn T59 S SG reading (dBm) 15.3	Substitution, 4 Ant. Pol. (H/V) V	4ft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.04	EIRP (dBm) 22.38	Limit (dBm) 33.0	(dB) -10.6	Notes
Receiving Substituti f GHz Low Ch 1.860	on: Horn T59 S SG reading (dBm) 15.3	Substitution, 4 Ant. Pol. (H/V) V	4ft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.04	EIRP (dBm) 22.38	Limit (dBm) 33.0	(dB) -10.6	Notes
Receiving Substituti f GHz Low Ch 1.860 1.860 Mid Ch	on: Horn T59 S SG reading (dBm) 15.3 16.0	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04	EIRP (dBm) 22.38 23.02	Limit (dBm) 33.0 33.0	(dB) -10.6 -10.0	Notes
Receiving Substituti f GHz Low Ch 1.860 1.860 Mid Ch 1.883 1.883	on: Horn T59 S SG reading (dBm) 15.3 16.0 15.5	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 22.38 23.02 22.56	Limit (dBm) 33.0 33.0 33.0	(dB) -10.6 -10.0 -10.4	Notes
Receiving Substituti f GHz Low Ch 1.860 1.860 Mid Ch 1.883	on: Horn T59 S SG reading (dBm) 15.3 16.0 15.5	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 22.38 23.02 22.56	Limit (dBm) 33.0 33.0 33.0	(dB) -10.6 -10.0 -10.4	Notes

Page 737 of 929

9.1.8. LTE BAND 26

QPSK EIRP POWER FOR LTE BAND 26 (1.4MHZ BANDWIDTH)

ompany: roject #: ate: est Engi onfigura lode:	neer: tion:	15U21635 12/16/2015 T wang EUT only	PSK 1.4MHz BW							
est Equi	pment: j: Sunol T899, a	and Chamber : 00022117, 4f	G Cable	n 245182-003; SUC Antenna Gain (dBi)	OFLEX 104PE ERP (dBm)	EA) EIRP (dBm)	ERP Limit (dBm)	EIRP Limit (dBm)	Margin (dB)	Notes
Low Ch										
814.70	14.55	V	0.62	0.0	13.93	16.08	38.45	40.60	-24.5	
814.70	20.06	H	0.62	0.0	19.44	21.59	38.45	40.60	-19.0	
Mid Ch										
819.00	14.80	V	0.62	0.0	14.18	16.33	38.45	40.60	-24.3	
819.00	20.85	H	0.62	0.0	20.23	22.38	38.45	40.60	-18.2	
High Ch										
823.30	14.96	V	0.62	0.0	14.34	16.49	38.45	40.60	-24.1	
823.30	20.62	H	0.62	0.0	20.00	22.15	38.45	40.60	-18.5	
Rev. 10.24.	13									

Page 738 of 929

16QAM EIRP POWER FOR LTE BAND 26 (1.4MHZ BANDWIDTH)

ompany:		451104005								
roject #:		15U21635								
ate:		12/16/2015 T								
est Engi		T wang								
onfigura ode:		EUT only	6QAM 1.4MHz BW							
Jue.		LIE Darid 20 I								
	g: Sunol T899, ion: Dipole S/N SG reading (dBm)	l: 00022117, 4		n 245182-003; SUC Antenna Gain (dBi)	OFLEX 104PE ERP (dBm)	EA) EIRP (dBm)	ERP Limit (dBm)	EIRP Limit (dBm)	Margin (dB)	Notes
_ow Ch		-								
814.70	13.65	V	0.62	0.0	13.03	15.18	38.45	40.60	-25.4	
814.70	19.26	H	0.62	0.0	18.64	20.79	38.45	40.60	-19.8	
Mid Ch										
819.00	13.90	V	0.62	0.0	13.28	15.43	38.45	40.60	-25.2	
819.00	20.00	Н	0.62	0.0	19.38	21.53	38.45	40.60	-19.1	
ligh Ch 823.30	13.96	v	0.62	0.0	13.34	15.49	38.45	40.60	-25.1	
823.30	19.82	H	0.62	0.0	19.20	21.35	38.45	40.60	-23.1	
ev. 10.24.	13									

Page 739 of 929

QPSK EIRP POWER FOR LTE BAND 26 (3.0MHZ BANDWIDTH)

ompany roject #: est Engi onfigura ode: <u>est Equi</u>	: ineer:	15U21635 12/16/2015								
ate: est Engi onfigura ode: est Equi	ineer:									
est Engi onfigura ode: est Equi	ineer:									
onfigura ode: est Equi		Twang								
ode: est Equi		EUT only								
est Equi			PSK 3MHz BW							
ubstituti	g: Sunol T899, ion: Dipole S/N	: 00022117, 4f		n 245182-003; SUCC	OFLEX 104PEA)				Manala	Neter
f GHz	SG reading (dBm)	Ant. Pol. (H/V)	(dB)	Antenna Gain (dBi)	(dBm)	EIRP (dBm)	(dBm)	EIRP Limit (dBm)	Margin (dB)	Notes
Low Ch		((1/V)	(ub)	(UDI)	(ubiii)	(ubiii)	(ubiii)	(ubiii)	(ub)	
815.50	14.55	v	0.62	0.0	13.93	16.08	38.45	40.60	-24.5	
815.50	20.36	H	0.62	0.0	19.74	21.89	38.45	40.60	-18.7	
Mid Ch 819.00	15.00	V	0.62	0.0	14.38	16.53	38.45	40.60	-24.1	
819.00	20.83	H	0.62	0.0	20.21	22.36	38.45	40.60	-24.1	
High Ch										
822.50 822.50	14.76 20.87	V H	0.62	0.0	14.14 20.25	16.29 22.40	38.45 38.45	40.60 40.60	-24.3 -18.2	
ev. 10.24.	13									

Page 740 of 929

16QAM EIRP POWER FOR LTE BAND 26 (3.0MHZ BANDWIDTH)

ompany:										
roject #:		15U21635								
ate:		12/16/2015								
est Engi		Twang								
onfigura		EUT only								
ode:			6QAM 3MHz BW							
f GHz	: Sunol T899, a on: Dipole S/N SG reading (dBm)	: 00022117, 4		n 245182-003; SUC Antenna Gain (dBi)	OFLEX 104PB ERP (dBm)	EA) EIRP (dBm)	ERP Limit (dBm)	EIRP Limit (dBm)	Margin (dB)	Notes
ow Ch 815.50	13.65	v	0.62	0.0	13.03	15.18	38.45	40.60	-25.4	
815.50	19.66	H	0.62	0.0	19.04	21.19	38.45	40.60	-19.4	
010100	10100		0102	0.0	10104	2	00.10	40100	-1014	
Mid Ch										
819.00	14.10	V	0.62	0.0	13.48	15.63	38.45	40.60	-25.0	
	19.86	Н	0.62	0.0	19.24	21.39	38.45	40.60	-19.2	
819.00										
			0.62	0.0	13.34	15.49	38.45	40.60	-25.1	
819.00 High Ch 822.50	13.96	V								

Page 741 of 929

QPSK EIRP POWER FOR LTE BAND 26 (5.0MHZ BANDWIDTH)

ompany:										
roject #:		15U21635								
ate:		12/16/2015								
est Engir		T wang								
onfigura		EUT only								
ode:		· · · · ·	PSK 5MHz BW							
	: Sunol T899, a on: Dipole S/N: SG reading			n 245182-003; SUC Antenna Gain	OFLEX 104PE	EA)	EDD Limit	EIRP Limit	Margin	Notes
GHz	(dBm)	(H/V)	(dB)	(dBi)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	Notes
Low Ch	(abiii)	(140)	(40)	(ubi)	(abiii)	(ubiii)	(abiii)	(abiii)		
816.50	14.95	V	0.62	0.0	14.33	16.48	38.45	40.60	-24.1	
	20.56	Н	0.62	0.0	19.94	22.09	38.45	40.60	-18.5	
816.50										
					14.28	16.43	38.45	40.60	-24.2	
Mid Ch	11.00	V	0.02						-24.2	
Mid Ch 819.00	14.90 20.86	V	0.62	0.0				40 60	-18.2	
Wid Ch 819.00	14.90 20.86	V H	0.62 0.62	0.0 0.0	20.24	22.39	38.45	40.60	-18.2	
Mid Ch 819.00 819.00 ligh Ch	20.86	Н	0.62	0.0	20.24	22.39	38.45			
816.50 Mid Ch 819.00 819.00 High Ch 821.50 821.50								40.60 40.60 40.60	-18.2 -24.2 -18.4	

Page 742 of 929

16QAM EIRP POWER FOR LTE BAND 26 (5.0MHZ BANDWIDTH)

ompany: roject #:		15U21635								
ate:		12/16/2015								
ate. est Engir		T2/16/2015 Twang								
onfigurat		EUT only								
ode:			6QAM 5MHz BW							
est Equip										
	: Sunol T899, a									
Ibstitutio	on: Dipole S/N	00022117, 4	it SMA Cable (s/	n 245182-003; SUC	OFLEX 104PE	A)				
f	SG reading		Cable Loss	Antenna Gain	ERP	EIRP	1	EIRP Limit	Margin	Notes
GHz	(dBm)	(H/V)	(dB)	(dBi)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	
.ow Ch 816.50	14.05	V	0.62	0.0	13.43	15.58	38.45	40.60	-25.0	
816.50	19.59	H	0.62	0.0	18.97	21.12	38.45	40.60	-23.0	
010.50	13.35		0.02	0.0	10.51	21.12	50.45	40.00	-13.5	
Mid Ch				İ						
	14.00	V	0.62	0.0	13.38	15.53	38.45	40.60	-25.1	
		Н	0.62	0.0	19.23	21.38	38.45	40.60	-19.2	
819.00	19.85									
819.00 819.00	19.85			1						
819.00 819.00 ligh Ch 821.50	19.85	V	0.62	0.0	13.24	15.39	38.45	40.60	-25.2	

Page 743 of 929

QPSK EIRP POWER FOR LTE BAND 26 (10.0MHZ BANDWIDTH)

		o E I I I	emont Radiated							
company										
roject #		15U21635								
)ate:		12/16/2015								
est Eng		T wang								
Configura Node:		EUT only	PSK 10MHz BW							
lode.		LIE Dand 20 Q	PSK TUIVINZ DVV							
	ipment:									
	g: Sunol T899, a									
ubstitut	ion: Dipole S/N	: 00022117, 4	ft SMA Cable (s/	n 245182-003; SUC	OFLEX 104P	'EA)				
f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	ERP	EIRP	EDD imit	EIDD I imit	Margin EIRP	Notes
	(dBm)	(H/V)	(dB)	(dBi)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	Notes
GHz	(ubiii)									
Mid Ch 819.00	15.10	v	0.62	0.0	14.48	16.63	38.45	40.60	-24.0	
GHz Mid Ch 819.00 819.00		V H	0.62 0.62	0.0 0.0	14.48 20.26	16.63 22.41	38.45 38.45	40.60 40.60	-24.0 -18.2	
Mid Ch 819.00 819.00	15.10 20.88									
Mid Ch 819.00 819.00	15.10 20.88									
Mid Ch 819.00 819.00	15.10 20.88									
Mid Ch 819.00 819.00	15.10 20.88									
Mid Ch 819.00 819.00	15.10 20.88									
Mid Ch 819.00 819.00	15.10 20.88									
Mid Ch 819.00	15.10 20.88									
Mid Ch 819.00 819.00	15.10 20.88									
Mid Ch 819.00 819.00	15.10 20.88									
Mid Ch 819.00 819.00	15.10 20.88									
Mid Ch 819.00 819.00	15.10 20.88									
Mid Ch 819.00 819.00	15.10 20.88									

Page 744 of 929

16QAM EIRP POWER FOR LTE BAND 26 (10.0MHZ BANDWIDTH)

			ency Substitut mont Radiated	tion Measurement Chamber G						
Company:										
roject #:		15U21635								
Date:		12/16/2015								
est Engi		T wang								
configura		EUT only								
lode:		LTE Band 26 16	QAM 10MHz BW							
	g: Sunol T899, a on: Dipole S/N: SG reading (dBm)	00022117, 4f	t SMA Cable (s/i	Antenna Gain	ERP	EIRP (dBm)	ERP Limit (dBm)	EIRP Limit (dBm)	Margin	Notes
Mid Ch	(abm)	(H/V)	(dB)	(dBi)	(dBm)	(apm)	(abm)	(abm)	(dB)	
819.00	14.30	V	0.62	0.0	13.68	15.83	38.45	40.60	-24.8	
	19.91	Ĥ	0.62	0.0	19.29	21.44	38.45	40.60	-19.2	
819.00	15.51					-		A		
								A		
		••	i	<u></u>						
			i					A		
								A		
819.00										
<u>819.00</u> Rev. 10.24.1										
		· · · · · · · · · · · · · · · · · · ·								

Page 745 of 929

9.1.9. LTE BAND 41

QPSK EIRP POWER FOR LTE BAND 41 (5.0MHZ BANDWIDTH)

Company:								
Project #:		15U21635						
Date:		12/16/2015						
lest Engi	neer:	T Wang						
Configura		EUT only						
Node:			PSK 5MHz BW					
				s/n 245182-003; SUC			Mergin CIDD	Natas
f GHz	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	Margin EIRP (dB)	Notes
f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	-	Notes
f GHz Low Ch 2.499	SG reading (dBm) 20.5	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 9.33	EIRP (dBm) 28.63	Limit (dBm) 33.0	(dB) -4.4	Notes
f GHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 2.499 2.499	SG reading (dBm) 20.5	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 9.33	EIRP (dBm) 28.63	Limit (dBm) 33.0	(dB) -4.4	Notes
f GHz Low Ch 2.499	SG reading (dBm) 20.5	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 9.33	EIRP (dBm) 28.63	Limit (dBm) 33.0	(dB) -4.4	Notes
f GHz Low Ch 2.499 2.499 Mid Ch	SG reading (dBm) 20.5 18.9	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.33 9.33	EIRP (dBm) 28.63 27.08	Limit (dBm) 33.0 33.0	(dB) -4.4 -5.9	Notes
f GHz Low Ch 2.499 2.499 Mid Ch 2.593 2.593	SG reading (dBm) 20.5 18.9 21.0	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.33 9.33 9.47	EIRP (dBm) 28.63 27.08 29.34	Limit (dBm) 33.0 33.0 33.0	(dB) -4.4 -5.9 	Notes
f GHz Low Ch 2.499 2.499 Mid Ch 2.593	SG reading (dBm) 20.5 18.9 21.0	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.33 9.33 9.47	EIRP (dBm) 28.63 27.08 29.34	Limit (dBm) 33.0 33.0 33.0	(dB) -4.4 -5.9 	Notes

Page 746 of 929

16QAM EIRP POWER FOR LTE BAND 41 (5.0MHZ BANDWIDTH)

Company	:							
Project #:		15U21635						
)ate:		12/16/2015						
lest Engi	neer:	T Wang						
Configura		EUT only						
/lode:			6QAM 5MHz BW					
ubstituti	on: Horn T59 S	nd Chamber Substitution, 4		/n 245182-003; SUC	OFLEX 104PE	A)		
f	SG reading	Substitution, 4	4ft SMA Cable (s Cable Loss	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
f GHz		ubstitution, 4	4ft SMA Cable (s				Margin EIRP (dB)	Notes
f GHz Low Ch	SG reading (dBm)	ubstitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz	SG reading	Substitution, 4	4ft SMA Cable (s Cable Loss	Antenna Gain	EIRP	Limit	_	Notes
f GHz Low Ch 2.499 2.499	SG reading (dBm) 19.5	Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi) 9.33	EIRP (dBm) 27.68	Limit (dBm) 33.0	(dB) -5.3	Notes
f GHz Low Ch 2.499 2.499 Mid Ch	SG reading (dBm) 19.5 18.0	Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.33 9.33	EIRP (dBm) 27.68 26.14	Limit (dBm) 33.0 33.0	(dB) -5.3 -6.9	Notes
f GHz Low Ch 2.499 2.499 Mid Ch 2.593	SG reading (dBm) 19.5 18.0 20.0	Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 1.15 1.15 1.16	Antenna Gain (dBi) 9.33 9.33 9.47	EIRP (dBm) 27.68 26.14 28.32	Limit (dBm) 33.0 33.0 33.0	(dB) -5.3 -6.9 -4.7	Notes
f GHz Low Ch 2.499 2.499 Mid Ch	SG reading (dBm) 19.5 18.0	Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.33 9.33	EIRP (dBm) 27.68 26.14	Limit (dBm) 33.0 33.0	(dB) -5.3 -6.9	Notes
f GHz Low Ch 2.499 2.499 Mid Ch 2.593 2.593	SG reading (dBm) 19.5 18.0 20.0	Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 1.15 1.15 1.16	Antenna Gain (dBi) 9.33 9.33 9.47	EIRP (dBm) 27.68 26.14 28.32	Limit (dBm) 33.0 33.0 33.0	(dB) -5.3 -6.9 -4.7	Notes
f GHz Low Ch 2.499 2.499 Mid Ch 2.593	SG reading (dBm) 19.5 18.0 20.0	Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 1.15 1.15 1.16	Antenna Gain (dBi) 9.33 9.33 9.47	EIRP (dBm) 27.68 26.14 28.32	Limit (dBm) 33.0 33.0 33.0	(dB) -5.3 -6.9 -4.7	Notes

Page 747 of 929

QPSK EIRP POWER FOR LTE BAND 41 (10.0MHZ BANDWIDTH)

ompany								
roject #:		15U21635						
ate:		12/16/2015						
est Engi	neer:	T Wang						
onfigura		EUT only						
lode:		-	PSK 10MHz BW					
	Fremont Radi on: Horn T59 S			/n 245182-003; SUC	OFLEX 104PE	A)		
				/n 245182-003; SUC Antenna Gain (dBi)	OFLEX 104PE EIRP (dBm)	A) Limit (dBm)	Margin EIRP (dB)	Notes
ubstituti f	on: Horn T59 S	Ant. Pol.	4ft SMA Cable (s Cable Loss	Antenna Gain	EIRP	Limit		Notes
f GHz	on: Horn T59 S SG reading (dBm) 20.8	Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi) 9.33	EIRP (dBm) 28.99	Limit (dBm) 33.0		Notes
f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 2.501 2.501	on: Horn T59 S SG reading (dBm) 20.8	Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi) 9.33	EIRP (dBm) 28.99	Limit (dBm) 33.0	(dB) _4.0	Notes
f GHz Low Ch 2.501	on: Horn T59 S SG reading (dBm) 20.8	Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi) 9.33	EIRP (dBm) 28.99	Limit (dBm) 33.0	(dB) _4.0	Notes
f GHz Low Ch 2.501 2.501 Mid Ch	on: Horn T59 S SG reading (dBm) 20.8 18.4	Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.33 9.33	EIRP (dBm) 28.99 26.58	Limit (dBm) 33.0 33.0	(dB) -4.0 -6.4	Notes
f GHz Low Ch 2.501 2.501 Mid Ch 2.593 2.593	on: Horn T59 S SG reading (dBm) 20.8 18.4 20.8	Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 1.15 1.15 1.16	Antenna Gain (dBi) 9.33 9.33 9.47	EIRP (dBm) 28.99 26.58 29.14	Limit (dBm) 33.0 33.0 33.0	(dB) -4.0 -6.4 -3.9	Notes
f GHz Low Ch 2.501 2.501 Mid Ch 2.593	on: Horn T59 S SG reading (dBm) 20.8 18.4 20.8	Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 1.15 1.15 1.16	Antenna Gain (dBi) 9.33 9.33 9.47	EIRP (dBm) 28.99 26.58 29.14	Limit (dBm) 33.0 33.0 33.0	(dB) -4.0 -6.4 -3.9	Notes

Page 748 of 929

16QAM EIRP POWER FOR LTE BAND 41 (10.0MHZ BANDWIDTH)

ompany								
roject #:		15U21635						
ate:		12/16/2015						
est Engi	neer:	T Wang						
onfigura		EUT only						
ode:		-	6QAM 10MHz BW					
		ubstitution, -	an Swit Cable (S	/n 245182-003; SUC		~		
f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
f GHz							Margin EIRP (dB)	Notes
f GHz	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	_	Notes
f GHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 2.501 2.501	SG reading (dBm) 19.8	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 9.33	EIRP (dBm) 28.01	Limit (dBm) 33.0	(dB) -5.0	Notes
f GHz 2.501 2.501 Mid Ch	SG reading (dBm) 19.8 17.4	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.33 9.33	EIRP (dBm) 28.01 25.60	Limit (dBm) 33.0 33.0	(dB) -5.0 -7.4	Notes
f GHz 2.501 2.501 Mid Ch 2.593	SG reading (dBm) 19.8 17.4 19.8	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.33 9.33 9.47	EIRP (dBm) 28.01 25.60 28.13	Limit (dBm) 33.0 33.0 33.0	(dB) -5.0 -7.4 -4.9	Notes
f GHz 2.501 2.501 Mid Ch	SG reading (dBm) 19.8 17.4	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.33 9.33	EIRP (dBm) 28.01 25.60	Limit (dBm) 33.0 33.0	(dB) -5.0 -7.4	Notes
f GHz 2.501 2.501 Mid Ch 2.593	SG reading (dBm) 19.8 17.4 19.8	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.33 9.33 9.47	EIRP (dBm) 28.01 25.60 28.13	Limit (dBm) 33.0 33.0 33.0	(dB) -5.0 -7.4 -4.9	Notes
f GHz Low Ch 2.501 2.501 Mid Ch 2.593 2.593	SG reading (dBm) 19.8 17.4 19.8	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.33 9.33 9.47	EIRP (dBm) 28.01 25.60 28.13	Limit (dBm) 33.0 33.0 33.0	(dB) -5.0 -7.4 -4.9	Notes

Page 749 of 929

QPSK EIRP POWER FOR LTE BAND 41 (15.0MHZ BANDWIDTH)

ompany:								
roject #:		15U21635						
ate:		12/16/2015						
est Engi	neer:	T Wang						
onfigura		EUT only						
lode:			PSK 15MHz BW					
-			G SMA Cables 4ft SMA Cable (s	s/n 245182-003; SUC	OFLEX 104PE	A)		
ubstitutio	on: Horn T59 S	Ant. Pol.	ft SMA Cable (s	Antenna Gain	EIRP	Limit	Margin EIRP (dB)	Notes
ubstituti	on: Horn T59 S	ubstitution, 4	ft SMA Cable (s			-	Margin EIRP (dB)	Notes
ubstitutio f GHz	on: Horn T59 S	Ant. Pol.	ft SMA Cable (s	Antenna Gain	EIRP	Limit		Notes
f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Ant. Pol. (H/V)	\$ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 2.504 2.504	on: Horn T59 S SG reading (dBm) 20.7	Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi) 9.34	EIRP (dBm) 28.91	Limit (dBm) 33.0	(dB) _4.1	Notes
f GHz Low Ch 2.504 2.504 Mid Ch	on: Horn T59 S SG reading (dBm) 20.7 19.3	Ant. Pol. (H/V) V H	tft SMA Cable (s Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.34 9.34	EIRP (dBm) 28.91 27.49	Limit (dBm) 33.0 33.0	(dB) -4.1 -5.5	Notes
f GHz Low Ch 2.504 2.504	on: Horn T59 S SG reading (dBm) 20.7	Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi) 9.34	EIRP (dBm) 28.91	Limit (dBm) 33.0	(dB) _4.1	Notes
f GHz Low Ch 2.504 2.504 Mid Ch 2.593 2.593	on: Horn T59 S SG reading (dBm) 20.7 19.3 20.9	Ant. Pol. (H/V) V H	tft SMA Cable (s Cable Loss (dB) 1.15 1.15 1.16	Antenna Gain (dBi) 9.34 9.34 9.47	EIRP (dBm) 28.91 27.49 29.24	Limit (dBm) 33.0 33.0 33.0	(dB) -4.1 -5.5 	Notes
f GHz Low Ch 2.504 2.504 Mid Ch 2.593	on: Horn T59 S SG reading (dBm) 20.7 19.3 20.9	Ant. Pol. (H/V) V H	tft SMA Cable (s Cable Loss (dB) 1.15 1.15 1.16	Antenna Gain (dBi) 9.34 9.34 9.47	EIRP (dBm) 28.91 27.49 29.24	Limit (dBm) 33.0 33.0 33.0	(dB) -4.1 -5.5 	Notes

Page 750 of 929

16QAM EIRP POWER FOR LTE BAND 41 (15.0MHZ BANDWIDTH)

ompany								
roject #:		15U21635						
ate:		12/16/2015						
est Engi	neer:	T Wang						
onfigura		EUT only						
ode:		-	6QAM 15MHz BW					
		ubstitution, -	an Swik Cable (S	/n 245182-003; SUC	OI LEX 104FL	~,		
f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
f GHz							Margin EIRP (dB)	Notes
f GHz	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	_	Notes
f GHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 2.504 2.504	SG reading (dBm) 19.8	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 9.34	EIRP (dBm) 28.00	Limit (dBm) 33.0	(dB) -5.0	Notes
f GHz 2.504 2.504 Mid Ch	SG reading (dBm) 19.8 18.4	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.34 9.34	EIRP (dBm) 28.00 26.59	Limit (dBm) 33.0 33.0	(dB) -5.0 -6.4	Notes
f GHz 2.504 2.504 2.504 Mid Ch 2.593	SG reading (dBm) 19.8 18.4 20.0	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.34 9.34 9.47	EIRP (dBm) 28.00 26.59 28.30	Limit (dBm) 33.0 33.0 33.0	(dB) -5.0 -6.4 -4.7	Notes
f GHz 2.504 2.504 Mid Ch	SG reading (dBm) 19.8 18.4	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.34 9.34	EIRP (dBm) 28.00 26.59	Limit (dBm) 33.0 33.0	(dB) -5.0 -6.4	Notes
f GHz Low Ch 2.504 2.504 Mid Ch 2.593 2.593 High Ch	SG reading (dBm) 19.8 18.4 20.0 19.1	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.16 1.16	Antenna Gain (dBi) 9.34 9.34 9.34 9.47 9.47	EIRP (dBm) 28.00 26.59 28.30 27.39	Limit (dBm) 33.0 33.0 33.0 33.0	(dB) -5.0 -6.4 -4.7 -5.6	Notes
f GHz Low Ch 2.504 2.504 Mid Ch 2.593 2.593	SG reading (dBm) 19.8 18.4 20.0	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.34 9.34 9.47	EIRP (dBm) 28.00 26.59 28.30	Limit (dBm) 33.0 33.0 33.0	(dB) -5.0 -6.4 -4.7	Notes

Page 751 of 929

QPSK EIRP POWER FOR LTE BAND 41 (20.0MHZ BANDWIDTH)

Company								
roject #:		15U21635						
)ate:		12/16/2015						
est Engi		T Wang						
onfigura		EUT only						
lode:			PSK 20MHz BW					
				/n 245182-003; SUC				
f GHz	SG reading (dBm)	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	Margin EIRP (dB)	Notes
f GHz Low Ch	SG reading (dBm)					Limit (dBm)	Margin EIRP (dB)	Notes
GHz	-	Ant. Pol.	Cable Loss	Antenna Gain	EIRP			Notes
GHz Low Ch	(dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	(dBm)	(dB)	Notes
GHz Low Ch 2.506 2.506	(dBm) 21.2	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 9.34	EIRP (dBm) 29.40	(dBm) 33.0	(dB) -3.6	Notes
GHz Low Ch 2.506 2.506 Mid Ch	(dBm) 21.2 19.7	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.34 9.34	EIRP (dBm) 29.40 27.89	(dBm) 33.0 33.0	(dB) -3.6 -5.1	Notes
GHz Low Ch 2.506 2.506	(dBm) 21.2	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 9.34	EIRP (dBm) 29.40	(dBm) 33.0	(dB) -3.6	Notes
GHz Low Ch 2.506 2.506 Mid Ch 2.593 2.593	(dBm) 21.2 19.7 21.2	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.34 9.34 9.47	EIRP (dBm) 29.40 27.89 29.50	(dBm) 33.0 33.0 33.0	(dB) -3.6 -5.1 -3.5	Notes
GHz Low Ch 2.506 2.506 Mid Ch 2.593 2.593 High Ch	(dBm) 21.2 19.7 21.2 19.9	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.16 1.16	Antenna Gain (dBi) 9.34 9.34 9.34 9.47 9.47	EIRP (dBm) 29.40 27.89 29.50 28.23	(dBm) 33.0 33.0 33.0 33.0 33.0	(dB) -3.6 -5.1 -3.5 -4.8	Notes
GHz Low Ch 2.506 2.506 Mid Ch 2.593 2.593	(dBm) 21.2 19.7 21.2	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.34 9.34 9.47	EIRP (dBm) 29.40 27.89 29.50	(dBm) 33.0 33.0 33.0	(dB) -3.6 -5.1 -3.5	Notes

Page 752 of 929

16QAM EIRP POWER FOR LTE BAND 41 (20.0MHZ BANDWIDTH)

company:								
roject #:		15U21635						
)ate:		12/16/2015						
est Engi	neer:	T Wang						
Configura		EUT only						
lode:			6QAM 20MHz BW					
-			G SMA Cables 4ft SMA Cable (s	/n 245182-003; SUC	OFLEX 104PE	A)		
ubstituti f	on: Horn T59 S	Ant. Pol.	4ft SMA Cable (s Cable Loss	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
f GHz	on: Horn T59 S	ubstitution, 4	4ft SMA Cable (s				Margin EIRP (dB)	Notes
f GHz Low Ch	on: Horn T59 S SG reading (dBm)	ubstitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 2.506	on: Horn T59 S SG reading (dBm) 20.3	Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB) 1.15	Antenna Gain (dBi) 9.34	EIRP (dBm) 28.44	Limit (dBm) 33.0	(dB) _4.6	Notes
f GHz Low Ch	on: Horn T59 S SG reading (dBm)	ubstitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 2.506 2.506 Mid Ch	on: Horn T59 S SG reading (dBm) 20.3 18.8	Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.34 9.34	EIRP (dBm) 28.44 26.99	Limit (dBm) 33.0 33.0	(dB) -4.6 -6.0	Notes
f GHz Low Ch 2.506 2.506 Mid Ch 2.593	on: Horn T59 S SG reading (dBm) 20.3 18.8 20.3	Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 1.15 1.15 1.16	Antenna Gain (dBi) 9.34 9.34 9.47	EIRP (dBm) 28.44 26.99 28.57	Limit (dBm) 33.0 33.0 33.0	(dB) -4.6 -6.0 -4.4	Notes
f GHz Low Ch 2.506 2.506 Mid Ch	on: Horn T59 S SG reading (dBm) 20.3 18.8	Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.34 9.34	EIRP (dBm) 28.44 26.99	Limit (dBm) 33.0 33.0	(dB) -4.6 -6.0	Notes
f GHz Low Ch 2.506 2.506 Mid Ch 2.593 2.593	on: Horn T59 S SG reading (dBm) 20.3 18.8 20.3	Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 1.15 1.15 1.16	Antenna Gain (dBi) 9.34 9.34 9.47	EIRP (dBm) 28.44 26.99 28.57	Limit (dBm) 33.0 33.0 33.0	(dB) -4.6 -6.0 -4.4	Notes
f GHz Low Ch 2.506 2.506 Mid Ch 2.593	on: Horn T59 S SG reading (dBm) 20.3 18.8 20.3	Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 1.15 1.15 1.16	Antenna Gain (dBi) 9.34 9.34 9.47	EIRP (dBm) 28.44 26.99 28.57	Limit (dBm) 33.0 33.0 33.0	(dB) -4.6 -6.0 -4.4	Notes

Page 753 of 929

9.2. RADIATED POWER (ERP & EIRP), UAT

EIRP POWER FOR LTE BAND 2 (1.4MHZ BANDWIDTH)

			EIRP(A	verage)
Mode	RB/RB SIZE	f (MHz)	dBm	mW
1.4MHz Band		1850.7	19.30	85.11
QPSK	1/0	1880.0	19.50	89.13
QFON		1909.3	19.67	92.68
1.4MHz Band		1850.7	18.57	71.94
16QAM	1/0	1880.0	18.70	74.13
IUQAW		1909.3	18.74	74.82

EIRP POWER FOR LTE BAND 2 (3.0MHZ BANDWIDTH)

			EIRP(A	verage)
Mode	RB/RB SIZE	f (MHz)	dBm	mW
3.0MHz Band		1851.5	19.69	93.11
QPSK	1/0	1880.0	19.76	94.62
QFSN		1908.5	19.73	93.97
3.0MHz Band		1851.5	18.74	74.82
16QAM	1/0	1880.0	18.89	77.45
IUQAM		1908.5	18.88	77.27

EIRP POWER FOR LTE BAND 2 (5.0MHZ BANDWIDTH)

			EIRP(A	verage)
Mode	RB/RB SIZE	f (MHz)	dBm	mW
5.0MHz Band		1852.5	19.13	81.85
QPSK	1/0	1880.0	19.30	85.11
QF SN		1907.5	19.15	82.22
5.0MHz Band		1852.5	18.44	69.82
16QAM	1/0	1880.0	18.39	69.02
TOQAIN		1907.5	18.32	67.92

EIRP POWER FOR LTE BAND 2 (10.0MHZ BANDWIDTH)

			EIRP(Average)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
10.0MHz Band QPSK	1/0	1855.0	19.37	86.50
		1880.0	19.19	82.99
		1905.0	19.24	83.95
10.0MHz Band 16QAM	and	1855.0	18.34	68.23
	1/0	1880.0	18.26	66.99
		1905.0	18.32	67.92

Page 754 of 929

EIRP POWER FOR LTE BAND 2 (15.0MHZ BANDWIDTH)

			EIRP(Average)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
15MHz Band QPSK	1/0	1857.5	19.28	84.72
		1880.0	19.14	82.04
		1902.5	19.11	81.47
15MHz Band 16QAM		1857.5	18.33	68.08
	1/0	1880.0	18.29	67.45
		1902.5	18.19	65.92

EIRP POWER FOR LTE BAND 2 (20.0MHZ BANDWIDTH)

			EIRP(Average)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
20.0MHz Band QPSK	1/0	1860.0	19.25	84.14
		1880.0	19.07	80.72
		1900.0	19.05	80.35
20MHz Band 16QAM	nd	1860.0	18.31	67.76
	1/0	1880.0	18.14	65.16
		1900.0	18.08	64.27

Page 755 of 929

EIRP POWER FOR LTE BAND 4 (1.4MHZ BANDWIDTH)

			EIRP(Average)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
1.4 MHZ BAND QPSK	1/0	1710.7	17.92	61.94
		1732.5	18.06	63.97
		1754.3	18.22	66.37
1.4 MHZ BAND 16QAM		1710.7	16.97	49.77
	1/0	1732.5	17.20	mW 61.94 63.97 66.37
		1754.3	17.17	52.12

EIRP POWER FOR LTE BAND 4 (3.0MHZ BANDWIDTH)

			EIRP(Average)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
3.0 MHZ BAND QPSK	1/0	1711.5	17.62	57.81
		1732.5	17.92	61.94
		1753.5	18.32	67.92
3.0 MHZ BAND 16QAM		1711.5	16.90	48.98
	1/0	1732.5	16.97	49.77
		1753.5	17.38	54.70

EIRP POWER FOR LTE BAND 4 (5.0MHZ BANDWIDTH)

			EIRP(Average)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
5.0 MHZ BAND QPSK	1/0	1712.5	17.81	60.39
		1732.5	18.15	65.31
		1752.5	18.43	69.66
5.0 MHZ BAND 16QAM		1712.5	16.88	48.75
	1/0	1732.5	17.10	51.29
		1752.5	17.53	56.62

EIRP POWER FOR LTE BAND 4 (10.0MHZ BANDWIDTH)

			EIRP(Average)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
10.0 MHZ BAND QPSK	1/0	1715.0	17.66	58.34
		1732.5	18.00	63.10
		1750.0	18.28	67.30
10.0 MHZ BAND 16QAM		1715.0	16.80	47.86
	1/0	1732.5	17.10	51.29
		1750.0	17.34	54.20

Page 756 of 929

EIRP POWER FOR LTE BAND 4 (15.0MHZ BANDWIDTH)

			EIRP(Average)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
15.0 MHZ BAND		1717.5	16.76	47.42
QPSK	1/0	1732.5	17.62	57.81
QFSN		1747.5	18.48	70.47
15.0 MHZ BAND 16QAM		1717.5	16.11	40.83
	1/0	1732.5	16.72	46.99
IUQAIVI		1747.5	17.54	56.75

EIRP POWER FOR LTE BAND 4 (20.0MHZ BANDWIDTH)

			EIRP(Average)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
20.0 MHZ BAND		1720.0	17.40	54.95
QPSK	1/0	1732.5	17.70	58.88
QPSK		1745.0	18.59	72.28
20.0 MHZ BAND 16QAM	1/0	1720.0	16.50	44.67
		1732.5	16.70	46.77
TOQAIVI		1745.0	17.64	58.08

Page 757 of 929

ERP POWER FOR LTE BAND 5 (1.4MHZ BANDWIDTH)

			ERP (Average)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
1.4MHz Band		824.7	16.66	46.34
QPSK	1/0	836.5	15.71	37.24
QFON		848.3	16.46	44.26
1.4MHz Band 16QAM		824.7	15.95	39.36
	1/0	836.5	15.30	33.88
IOQAN		848.3	15.86	38.55

ERP POWER FOR LTE BAND 5 (3.0MHZ BANDWIDTH)

			ERP (Average)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
3.0 MHZ BAND	1/0	825.5	16.84	48.31
QPSK		836.5	16.32	42.85
QPSN		847.5	16.36	43.25
3.0 MHZ BAND 16QAM		825.5	16.23	41.98
	1/0	836.5	15.46	35.16
TOQAM		847.5	15.81	38.11

ERP POWER FOR LTE BAND 5 (5.0MHZ BANDWIDTH)

			ERP (Average)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
		826.5	16.61	45.81
5MHz Band QPSK	1/0	836.5	15.69	37.07
		846.5	16.08	40.55
5MHz Band 16QAM		826.5	15.73	37.41
	1/0	836.5	14.84	30.48
IOQAIN		846.5	15.68	36.98

ERP POWER FOR LTE BAND 5 (10.0MHZ BANDWIDTH)

			ERP (Average)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
10.0 MHZ BAND		829.0	16.56	45.29
QPSK	1/0	836.5	16.45	44.16
QFON		844.0	16.13	41.02
10.0 MHZ BAND 16QAM	1/0	829.0	16.08	40.55
		836.5	15.30	33.88
TOQAIN		844.0	15.55	35.89

Page 758 of 929

EIRP POWER FOR LTE BAND 7 (5.0MHZ BANDWIDTH)

			EIRP(Peak)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
5.0 MHZ BAND	25/0	2502.5	24.13	258.82
QPSK		2535.0	24.45	278.61
QI OK		2567.5	24.51	282.49
5.0 MHZ BAND 16QAM		2502.5	22.96	197.70
	25/0	2535.0	23.12	205.12
IOQAM		2567.5	23.14	206.06

EIRP POWER FOR LTE BAND 7 (10.0MHZ BANDWIDTH)

			EIRP(Peak)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
10.0 MHZ BAND		2505.0	24.16	260.62
QPSK	50/0	2535.0	24.38	274.16
QFSN		2565.0	24.71	295.80
10.0 MHZ BAND 16QAM	50/0	2505.0	23.42	219.79
		2535.0	23.64	231.21
TOQAM		2565.0	24.13	258.82

EIRP POWER FOR LTE BAND 7 (15.0MHZ BANDWIDTH)

			EIRP(Peak)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
15.0 MHZ BAND		2507.5	23.83	241.55
QPSK	75/0	2535.0	24.70	295.12
QPSK		2562.5	24.80	302.00
15.0 MHZ BAND 16QAM		2507.5	22.76	188.80
	75/0	2535.0	23.68	233.35
		2562.5	23.88	244.34

EIRP POWER FOR LTE BAND 7 (20.0MHZ BANDWIDTH)

			EIRP(Peak)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
20.0 MHZ BAND	100/0	2510.0	24.73	297.17
QPSK		2535.0	24.75	298.54
QPSN		2560.0	24.77	299.92
20.0 MHZ BAND 16QAM		2510.0	23.72	235.50
	100/0	2535.0	23.75	237.14
IUQAW		2560.0	23.80	239.88

Page 759 of 929

ERP POWER FOR LTE BAND 12 (1.4MHZ BANDWIDTH)

			ERP (Average)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
1.4MHz Band		699.7	15.24	33.42
QPSK	1/0	707.5	15.70	37.15
QFON		715.3	16.09	40.64
1.4MHz Band 16QAM		699.7	14.44	27.80
	1/0	707.5	14.74	29.79
IUQAIVI		715.3	15.12	32.51

ERP POWER FOR LTE BAND 12 (3.0MHZ BANDWIDTH)

			ERP (Average)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
3.0 MHZ BAND		700.5	15.38	34.51
QPSK	1/0	707.5	15.95	39.36
QPSN		714.5	16.40	43.65
3.0 MHZ BAND 16QAM		700.5	14.31	26.98
	1/0	707.5	15.04	31.92
TOQAM		714.5	15.47	35.24

ERP POWER FOR LTE BAND 12 (5.0MHZ BANDWIDTH)

			ERP (Average)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
		701.5	15.27	33.65
5MHz Band QPSK	1/0	707.5	15.77	37.76
		713.5	16.04	40.18
5MHz Band 16QAM		701.5	14.27	26.73
	1/0	707.5	14.75	29.85
IUQAIVI		713.5	14.97	31.41

ERP POWER FOR LTE BAND 12 (10.0MHZ BANDWIDTH)

			ERP (Average)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
10.0 MHZ BAND		704.0	15.53	35.73
QPSK	1/0	707.5	15.63	36.56
QFSN		711.0	16.09	40.64
10.0 MHZ BAND 16QAM		704.0	14.45	27.86
	1/0	707.5	14.36	27.29
IOQAM		711.0	15.20	33.11

Page 760 of 929

ERP POWER FOR LTE BAND 17 (5.0MHZ BANDWIDTH)

			ERP(Average)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
		706.5	16.30	42.66
5MHz Band QPSK	1/0	710.0	16.80	47.86
		713.5	16.59	45.60
5MHz Band 16QAM		706.5	14.92	31.05
	1/0	710.0	15.40	34.67
TOQAM		713.5	15.22	33.27

EIRP POWER FOR LTE BAND 17 (10.0MHZ BANDWIDTH)

			ERP(A	verage)
Mode	RB/RB SIZE	f (MHz)	dBm	mW
10.0 MHZ BAND QPSK	1/0	710.0	16.68	46.56
10.0 MHZ BAND 16QAM	170	710.0	15.66	36.81

Page 761 of 929

EIRP POWER FOR LTE BAND 25 (1.4MHZ BANDWIDTH)

			EIRP(Average)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
1.4 MHZ BAND		1850.7	19.73	100.69
QPSK	1/0	1882.5	20.03	90.78
		1914.3	19.58	90.78
1.4 MHZ BAND 16QAM		1850.7	19.13	81.85
	1/0	1882.5	19.30	85.11
IUQAW		1914.3	18.64	73.11

EIRP POWER FOR LTE BAND 25 (3.0MHZ BANDWIDTH)

			EIRP(Average)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
3.0 MHZ BAND		1851.5	19.89	97.50
QPSK	1/0	1882.5 20.13	103.04	
QF ON		1913.5	19.86	96.83
3.0 MHZ BAND 16QAM		1851.5	19.36	86.30
	1/0	1882.5	19.45	88.10
IUQAW		1913.5	19.43	87.70

EIRP POWER FOR LTE BAND 25 (5.0MHZ BANDWIDTH)

			EIRP(Average)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
5.0 MHZ BAND		1852.5	19.03	79.98
QPSK	1/0	1882.5	20.07	mW 79.98 101.62 92.26 76.74 77.27
		1912.5	19.65	92.26
5.0 MHZ BAND 16QAM		1852.5	18.85	76.74
	1/0	1882.5	18.88	77.27
TOQAM		1912.5	19.16	82.41

EIRP POWER FOR LTE BAND 25 (10.0MHZ BANDWIDTH)

			EIRP(Average)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
10.0 MHZ BAND		1855.0	19.66	92.47
QPSK	1/0	1882.5	19.56	90.36
QFON		1910.0	19.35	86.10
10.0 MHZ BAND 16QAM		1855.0	19.13	81.85
	1/0	1882.5	18.65	73.28
TOQAM		1910.0	18.55	71.61

Page 762 of 929

EIRP POWER FOR LTE BAND 25 (15.0MHZ BANDWIDTH)

			EIRP(Average)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
15.0 MHZ BAND		1857.5	19.28	84.72
QPSK	1/0	1882.5	1882.5 19.70 93	93.33
QI ON		1907.5	19.65	92.26
15.0 MHZ BAND 16QAM		1857.5	19.09	81.10
	1/0	1882.5	18.84	76.56
IOQAW		1907.5	19.20	83.18

EIRP POWER FOR LTE BAND 25 (20.0MHZ BANDWIDTH)

			EIRP(Average)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
20.0 MHZ BAND		1860.0	19.49	88.92
QPSK	1/0	1882.5	19.04	80.17
QFSN		1905.0	20.00	100.00
20.0 MHZ BAND 16QAM		1860.0	19.10	81.28
	1/0	1882.5	18.37	68.71
TOQAIM		1905.0	19.09	81.10

Page 763 of 929

ERP POWER FOR LTE BAND 26 (1.4MHZ BANDWIDTH)

			ERP(Average)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
1.4 MHZ BAND		814.7	16.33	42.95
QPSK	1/0	819.0 17.36	54.45	
QFSK		823.3	17.08	51.05
1.4 MHZ BAND 16QAM		814.7	15.48	35.32
	1/0	819.0	16.54	45.08
IUQAIVI		823.3	16.04	40.18

ERP POWER FOR LTE BAND 26 (3.0MHZ BANDWIDTH)

			ERP(Average)	
Mode	RB/RB SIZE	f (MHz)	dBm	mW
3.0 MHZ BAND		815.5	16.72	46.99
QPSK	1/0	819.0	17.34	54.20
QI ON		822.5	17.19	52.36
3.0 MHZ BAND 16QAM		815.5	15.92	39.08
	1/0	819.0	16.45	44.16
TOQAIN		822.5	16.20	41.69

ERP POWER FOR LTE BAND 26 (5.0MHZ BANDWIDTH)

			ERP(A	verage)
Mode	RB/RB SIZE	f (MHz)	dBm	mW
5.0 MHZ BAND		816.5	16.68	46.56
QPSK	1/0	819.0	17.36	54.45
QION		821.5	17.14	51.76
5.0 MHZ BAND		816.5	15.88	38.73
16QAM	1/0	819.0	16.42	43.85
IUQAW		821.5	16.29	42.56

ERP POWER FOR LTE BAND 26 (10.0MHZ BANDWIDTH)

			ERP(A	verage)
Mode	RB/RB SIZE	f (MHz)	dBm	mW
10.0 MHZ BAND QPSK	1/0	819.0	17.19	52.36
10.0 MHZ BAND 16QAM	1/0	819.0	16.33	42.95

Page 764 of 929

EIRP POWER FOR LTE BAND 41 (5.0MHZ BANDWIDTH)

			EIRP	(Peak)
Mode	RB/RB SIZE	f (MHz)	dBm	mW
5.0 MHZ BAND		2498.5	25.58	361.41
QPSK	25/0	2593.0	25.03	318.42
QF SN		2687.5	24.68	293.76
5.0 MHZ BAND		2498.5	24.64	291.07
16QAM	25/0	2593.0	24.14	259.42
TOQAIN		2687.5	23.54	225.94

EIRP POWER FOR LTE BAND 41 (10.0MHZ BANDWIDTH)

			EIRP	(Peak)
Mode	RB/RB SIZE	f (MHz)	dBm	mW
10.0 MHZ BAND		2501.0	25.86	385.48
QPSK	50/0	2593.0	25.39	345.94
QFOR		2685.0	25.08	322.11
10.0 MHZ BAND		2501.0	24.71	295.80
16QAM	50/0	2593.0	24.49	281.19
TOQAIVI		2685.0	24.34	271.64

EIRP POWER FOR LTE BAND 41(15.0MHZ BANDWIDTH)

			EIRP(Peak)
Mode	RB/RB SIZE	f (MHz)	dBm	mW
15.0 MHZ BAND		2503.5	25.29	338.06
QPSK	75/0	2593.0	25.43	349.14
QFSK		2682.5	24.96	313.33
15.0 MHZ BAND		2503.5	24.27	267.30
16QAM	75/0	2593.0	24.42	276.69
IUQAW		2682.5	24.13	258.82

EIRP POWER FOR LTE BAND 41 (20.0MHZ BANDWIDTH)

			EIRP(Peak)
Mode	RB/RB SIZE	f (MHz)	dBm	mW
20.0 MHZ BAND		2506.0	25.75	375.84
QPSK	100/0	2593.0	25.13	325.84
QFON		2680.0	23.86	243.22
20.0 MHZ BAND		2506.0	24.85	305.49
16QAM	100/0	2593.0	24.19	262.42
		2680.0	22.03	159.59

Page 765 of 929

9.2.1. LTE BAND 2

QPSK EIRP POWER FOR LTE BAND 2 (1.4MHZ BANDWIDTH)

Company:								
Project #:		15U21635						
Date:		12/17/2015						
lest Engi	neer:	G. Chan						
configura		EUT only						
/lode:			SK 1.4MHz BW					
				s/n 245182-003; SU				
f GHz	on: Horn T59 S SG reading (dBm)	Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	s/n 245182-003; SU Antenna Gain (dBi)	COFLEX 1 EIRP (dBm)	04PEA) Limit (dBm)	Margin EIRP (dB)	Notes
f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit		Notes
f GHz	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit		Notes
f GHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.8507 1.8507	SG reading (dBm) 12.2	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 8.05	EIRP (dBm) 19.30	Limit (dBm) 33.0	(dB) -13.7	Notes
f GHz Low Ch 1.8507	SG reading (dBm) 12.2	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 8.05	EIRP (dBm) 19.30	Limit (dBm) 33.0	(dB) -13.7	Notes
f GHz Low Ch 1.8507 1.8507 Mid Ch	SG reading (dBm) 12.2 12.2	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 19.30 19.24	Limit (dBm) 33.0 33.0	(dB) -13.7 -13.8	Notes
f GHz Low Ch 1.8507 1.8507 Mid Ch 1.8800 1.8800	SG reading (dBm) 12.2 12.2 12.5	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.98 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 19.30 19.24 19.50	Limit (dBm) 33.0 33.0 33.0	(dB) -13.7 -13.8 -13.5	Notes
f GHz Low Ch 1.8507 1.8507 Mid Ch 1.8800	SG reading (dBm) 12.2 12.2 12.5	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.98 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 19.30 19.24 19.50	Limit (dBm) 33.0 33.0 33.0	(dB) -13.7 -13.8 -13.5	Notes

Page 766 of 929

16QAM EIRP POWER FOR LTE BAND 2 (1.4MHZ BANDWIDTH)

company								
roject #:		15U21635						
)ate:		12/17/2015						
est Engi	neer:	G. Chan						
Configura		EUT only						
/lode:			QAM 1.4MHz BW					
			G SMA Cables 4ft SMA Cable (s	s/n 245182-003; SU	COFLEX 1	04PEA)		
Substituti f	on: Horn T59 S	Substitution, 4	ft SMA Cable (s	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
f GHz	on: Horn T59 S	Substitution, 4	ft SMA Cable (s				Margin EIRP (dB)	Notes
f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.851	on: Horn T59 S SG reading (dBm) 11.5	Substitution, 4 Ant. Pol. (H/V) V	fft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi) 8.05	EIRP (dBm) 18.57	Limit (dBm) 33.0	(dB) -14.4	Notes
f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.851	on: Horn T59 S SG reading (dBm) 11.5	Substitution, 4 Ant. Pol. (H/V) V	fft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi) 8.05	EIRP (dBm) 18.57	Limit (dBm) 33.0	(dB) -14.4	Notes
f GHz Low Ch 1.851 1.851 Mid Ch 1.880	on: Horn T59 S SG reading (dBm) 11.5	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 18.57 18.04 18.70	Limit (dBm) 33.0 33.0 33.0	(dB) -14.4 -15.0 -14.3	Notes
f GHz Low Ch 1.851 1.851 Mid Ch	on: Horn T59 \$ SG reading (dBm) 11.5 11.0	Substitution, 4 Ant. Pol. (H/V) V H	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 18.57 18.04	Limit (dBm) 33.0 33.0	(dB) -14.4 -15.0	Notes
f GHz Low Ch 1.851 1.851 Mid Ch 1.880 1.880	on: Horn T59 \$ SG reading (dBm) 11.5 11.0 11.7	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 18.57 18.04 18.70	Limit (dBm) 33.0 33.0 33.0	(dB) -14.4 -15.0 -14.3	Notes
f GHz Low Ch 1.851 1.851 Mid Ch 1.880	on: Horn T59 \$ SG reading (dBm) 11.5 11.0 11.7	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 18.57 18.04 18.70	Limit (dBm) 33.0 33.0 33.0	(dB) -14.4 -15.0 -14.3	Notes

Page 767 of 929

QPSK EIRP POWER FOR LTE BAND 2 (3.0MHZ BANDWIDTH)

ompany	:							
roject #:		15U21635						
ate:		12/17/2015						
est Engi	ineer:	G. Chan						
onfigura		EUT only						
lode:		LTE Band 2 QP	SK 3MHz BW					
	g: Horn T862, a ion: Horn T59 S			s/n 245182-003; SU	COFLEX 1	04PEA)		
ubstituti f	ion: Horn T59 S	Substitution, 4	ft SMA Cable (s	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
ubstituti f GHz	ion: Horn T59 S	Substitution, 4	ft SMA Cable (s				Margin EIRP (dB)	Notes
ubstituti f GHz Low Ch	SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.852	ion: Horn T59 S SG reading (dBm) 11.7	Substitution, 4 Ant. Pol. (H/V) V	fft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 18.81	Limit (dBm)	(dB) -14.2	Notes
ubstituti f GHz Low Ch	SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.852 1.852 Mid Ch	SG reading (dBm) 11.7 12.6	Substitution, 4 Ant. Pol. (H/V) V H	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 18.81 19.69	Limit (dBm) 33.0 33.0	(dB) -14.2 -13.3	Notes
dbstituti f GHz Low Ch 1.852 1.852 Mid Ch 1.880	SG reading (dBm) 11.7 12.6	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 18.81 19.69 19.27	Limit (dBm) 33.0 33.0 33.0	(dB) -14.2 -13.3 -13.7	Notes
f GHz Low Ch 1.852 1.852 Mid Ch	SG reading (dBm) 11.7 12.6	Substitution, 4 Ant. Pol. (H/V) V H	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 18.81 19.69	Limit (dBm) 33.0 33.0	(dB) -14.2 -13.3	Notes
ubstituti f GHz Low Ch 1.852 1.852 Mid Ch 1.880 1.880	SG reading (dBm) 11.7 12.6	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 18.81 19.69 19.27	Limit (dBm) 33.0 33.0 33.0	(dB) -14.2 -13.3 -13.7	Notes
ubstituti f GHz Low Ch 1.852 1.852 Mid Ch 1.880	SG reading (dBm) 11.7 12.6	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 18.81 19.69 19.27	Limit (dBm) 33.0 33.0 33.0	(dB) -14.2 -13.3 -13.7	Notes

Page 768 of 929

16QAM EIRP POWER FOR LTE BAND 2 (3.0MHZ BANDWIDTH)

ompany								
roject #:		15U21635						
ate:		12/17/2015						
est Engi		G. Chan						
onfigura		EUT only						
ode:		LTE Band 2 160	Qam 3MHz BW					
eceiving	on: Horn T59 S	Substitution, 4		/n 245182-003; SU				
eceiving ubstituti f	g: Horn T862, a on: Horn T59 S SG reading	Substitution, 4 Ant. Pol.	Ift SMA Cable (s	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
eceiving ubstituti f GHz	g: Horn T862, a on: Horn T59 §	Substitution, 4	lft SMA Cable (s				Margin EIRP (dB)	Notes
eceiving ubstituti f GHz Low Ch	g: Horn T862, a on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
eceiving ubstituti f GHz	g: Horn T862, a on: Horn T59 S SG reading	Substitution, 4 Ant. Pol.	Ift SMA Cable (s	Antenna Gain	EIRP	Limit		Notes
f GHz 1.852	2: Horn T862, a on: Horn T59 S SG reading (dBm) 11.2	Substitution, 4 Ant. Pol. (H/V) V	fft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 18.28	Limit (dBm)	(dB) -14.7	Notes
f GHz Low Ch 1.852 1.852 Mid Ch	2: Horn T862, a on: Horn T59 S SG reading (dBm) 11.2 11.7	Substitution, 4 Ant. Pol. (H/V) V H	Ift SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 18.28 18.74	Limit (dBm) 33.0 33.0	(dB) -14.7 -14.3	Notes
eceiving ubstituti f GHz Low Ch 1.852 1.852 Mid Ch 1.880	3: Horn T862, a on: Horn T59 S SG reading (dBm) 11.2 11.7 11.0	Substitution, 4 Ant. Pol. (H/V) V H V	Ift SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 18.28 18.74 18.02	Limit (dBm) 33.0 33.0 33.0	(dB) -14.7 -14.3 -15.0	Notes
f GHz Low Ch 1.852 1.852 Mid Ch	2: Horn T862, a on: Horn T59 S SG reading (dBm) 11.2 11.7	Substitution, 4 Ant. Pol. (H/V) V H	Ift SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 18.28 18.74	Limit (dBm) 33.0 33.0	(dB) -14.7 -14.3	Notes
f GHz Low Ch 1.852 1.852 Mid Ch 1.880 1.880	3: Horn T862, a on: Horn T59 S SG reading (dBm) 11.2 11.7 11.0	Substitution, 4 Ant. Pol. (H/V) V H V	Ift SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 18.28 18.74 18.02	Limit (dBm) 33.0 33.0 33.0	(dB) -14.7 -14.3 -15.0	Notes
eceiving ubstituti f GHz Low Ch 1.852 1.852 Mid Ch 1.880	3: Horn T862, a on: Horn T59 S SG reading (dBm) 11.2 11.7 11.0	Substitution, 4 Ant. Pol. (H/V) V H V	Ift SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 18.28 18.74 18.02	Limit (dBm) 33.0 33.0 33.0	(dB) -14.7 -14.3 -15.0	Notes

Page 769 of 929

QPSK EIRP POWER FOR LTE BAND 2 (5.0MHZ BANDWIDTH)

ompany	:							
roject #:		15U21635						
ate:		12/17/2015						
est Engi	ineer:	G. Chan						
onfigura		EUT only						
lode:		LTE Band 2 QP	SK 5MHz BW					
			G SMA Cables 4ft SMA Cable (s	s/n 245182-003; SU	COFLEX 1	04PEA)		
ubstituti f	ion: Horn T59 S	Substitution, 4	4ft SMA Cable (s Cable Loss	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
f GHz	ion: Horn T59 S	Substitution, 4	4ft SMA Cable (s		-		Margin EIRP (dB)	Notes
f GHz Low Ch	SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.853	ion: Horn T59 S SG reading (dBm) 12.0	Substitution, 4 Ant. Pol. (H/V) V	tft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 19.09	Limit (dBm)	(dB) -13.9	Notes
f GHz Low Ch	SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.853 1.853 Mid Ch	SG reading (dBm) 12.0 12.1	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 19.09 19.13	Limit (dBm) 33.0 33.0	(dB) -13.9 -13.9	Notes
f GHz Low Ch 1.853 1.853 Mid Ch 1.880	SG reading (dBm) 12.0 12.1 11.9	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 19.09 19.13 18.91	Limit (dBm) 33.0 33.0 33.0	(dB) -13.9 -13.9 -13.9 -14.1	Notes
f GHz Low Ch 1.853 1.853 Mid Ch	SG reading (dBm) 12.0 12.1	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 19.09 19.13	Limit (dBm) 33.0 33.0	(dB) -13.9 -13.9	Notes
f GHz Low Ch 1.853 1.853 Mid Ch 1.880 1.880	SG reading (dBm) 12.0 12.1 11.9	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 19.09 19.13 18.91	Limit (dBm) 33.0 33.0 33.0	(dB) -13.9 -13.9 -13.9 -14.1	Notes
f GHz Low Ch 1.853 1.853 Mid Ch 1.880	SG reading (dBm) 12.0 12.1 11.9	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 19.09 19.13 18.91	Limit (dBm) 33.0 33.0 33.0	(dB) -13.9 -13.9 -13.9 -14.1	Notes

Page 770 of 929

16QAM EIRP POWER FOR LTE BAND 2 (5.0MHZ BANDWIDTH)

ompany	r:							
roject #		15U21635						
ate:		12/17/2015						
est Eng		G. Chan						
-								
onfigur ode:		EUT only LTE Band 2 160						
est Eau	ipment:							
eceivin	g: Horn T862, a	nd Chamber	G SMA Cables					
	g. 110111 1002, a	nu chamber	o SinA Gables					
	-			/n 245182-003: SU	COFLEX 1	04PEA)		
	-			s/n 245182-003; SU	COFLEX 1	04PEA)		
	ion: Horn T59 S	Substitution, 4	lft SMA Cable (s	s/n 245182-003; SU Antenna Gain	-		Margin EIRP	Notes
ubstitut	ion: Horn T59 S	Substitution, 4	Ift SMA Cable (s	Antenna Gain	EIRP	Limit	Margin EIRP (dB)	Notes
ubstitut f GHz	ion: Horn T59 S	Substitution, 4	lft SMA Cable (s		-		Margin EIRP (dB)	Notes
ubstitut f	ion: Horn T59 S	Substitution, 4	Ift SMA Cable (s	Antenna Gain	EIRP	Limit		Notes
f GHz Low Ch	SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.853 1.853	SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V) V	fft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 17.67	Limit (dBm)	(dB) -15.3	Notes
f GHz Low Ch 1.853 1.853 Mid Ch	ion: Horn T59 \$ SG reading (dBm) 10.6 11.4	Substitution, 4 Ant. Pol. (H/V) V H	Ift SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 17.67 18.44	Limit (dBm) 33.0 33.0	(dB) -15.3 -14.6	Notes
f GHz Low Ch 1.853 1.853 Mid Ch 1.880	ion: Horn T59 \$ SG reading (dBm) 10.6 11.4 10.4	Substitution, 4 Ant. Pol. (H/V) V H V	Ift SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 17.67 18.44 17.41	Limit (dBm) 33.0 33.0 33.0	(dB) -15.3 -14.6 -15.6	Notes
f GHz Low Ch 1.853 1.853 Mid Ch	ion: Horn T59 \$ SG reading (dBm) 10.6 11.4	Substitution, 4 Ant. Pol. (H/V) V H	Ift SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 17.67 18.44	Limit (dBm) 33.0 33.0	(dB) -15.3 -14.6	Notes
f GHz Low Ch 1.853 1.853 Mid Ch 1.880 1.880	ion: Horn T59 \$ SG reading (dBm) 10.6 11.4 10.4	Substitution, 4 Ant. Pol. (H/V) V H V	Ift SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 17.67 18.44 17.41	Limit (dBm) 33.0 33.0 33.0	(dB) -15.3 -14.6 -15.6	Notes
f GHz Low Ch 1.853 1.853 Mid Ch 1.880 1.880 High Ch	ion: Horn T59 \$ SG reading (dBm) 10.6 11.4 10.4 11.3	Substitution, 4 Ant. Pol. (H/V) V H V H	Iff SMA Cable (s Cable Loss (dB) 0.98 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03 8.03 8.03	EIRP (dBm) 17.67 18.44 17.41 18.39	Limit (dBm) 33.0 33.0 33.0 33.0 33.0	(dB) -15.3 -14.6 -15.6 -14.6	Notes
f GHz Low Ch 1.853 1.853 Mid Ch 1.880 1.880	ion: Horn T59 \$ SG reading (dBm) 10.6 11.4 10.4	Substitution, 4 Ant. Pol. (H/V) V H V	Ift SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 17.67 18.44 17.41	Limit (dBm) 33.0 33.0 33.0	(dB) -15.3 -14.6 -15.6	Notes

Page 771 of 929

QPSK EIRP POWER FOR LTE BAND 2 (10.0MHZ BANDWIDTH)

ompany								
roject #		15U21635						
ate:		12/17/2015						
est Engi		G. Chan						
Configura								
onngura lode:		EUT only	SK 10MHz BW					
	g: Horn T862, a	and Observations	O CMA Cables					
est Equi			C CMA Cables					
	-			0 245182 002 SI				
	-			/n 245182-003; SU	COFLEX 1	04PEA)		
	-			/n 245182-003; SU Antenna Gain	COFLEX 1	04PEA) Limit	Margin EIRP	Notes
ubstitut	ion: Horn T59 S	Substitution, 4	4ft SMA Cable (s				Margin EIRP (dB)	Notes
ubstitut	SG reading (dBm)	Substitution, 4	4ft SMA Cable (s	Antenna Gain	EIRP	Limit	-	Notes
f GHz Low Ch 1.855	SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V) V	4ft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 17.77	Limit (dBm)	(dB) -15.2	Notes
f GHz Low Ch	SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.855 1.855	SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V) V	4ft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 17.77	Limit (dBm)	(dB) -15.2	Notes
f GHz Low Ch 1.855 1.855 Mid Ch	SG reading (dBm) 10.7 12.3	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 17.77 19.37	Limit (dBm) 33.0 33.0	(dB) -15.2 -13.6	Notes
f GHz Low Ch 1.855 1.855 Mid Ch 1.880	SG reading (dBm) 10.7 12.3 11.1	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 17.77 19.37 18.17	Limit (dBm) 33.0 33.0 33.0	(dB) -15.2 -13.6 -14.8	Notes
f GHz Low Ch 1.855 1.855 Mid Ch	SG reading (dBm) 10.7 12.3	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 17.77 19.37	Limit (dBm) 33.0 33.0	(dB) -15.2 -13.6	Notes
f GHz Low Ch 1.855 1.855 Mid Ch 1.880	SG reading (dBm) 10.7 12.3 11.1	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 17.77 19.37 18.17	Limit (dBm) 33.0 33.0 33.0	(dB) -15.2 -13.6 -14.8	Notes
f GHz Low Ch 1.855 1.855 Mid Ch 1.880 1.880	SG reading (dBm) 10.7 12.3 11.1	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 17.77 19.37 18.17	Limit (dBm) 33.0 33.0 33.0	(dB) -15.2 -13.6 -14.8	Notes

Page 772 of 929

16QAM EIRP POWER FOR LTE BAND 2 (10.0MHZ BANDWIDTH)

ompany								
roject #:		15U21635						
ate:		12/17/2015						
est Engi		G. Chan						
Configura		EUT only						
lode:			QAM 10MHz BW					
	· · · · · · · · · · · · · · · · · · ·		G SMA Cables					
ubstituti	on: Horn T59 S	Substitution, 4	ft SMA Cable (s	/n 245182-003; SU			· • • • • • • • • • • • • • • • • • • •	
ubstituti	on: Horn T59 S	Substitution, 4 Ant. Pol.	ft SMA Cable (s	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
f GHz	on: Horn T59 S	Substitution, 4	ft SMA Cable (s				Margin EIRP (dB)	Notes
f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
ubstituti f GHz	on: Horn T59 S	Substitution, 4 Ant. Pol.	ft SMA Cable (s	Antenna Gain	EIRP	Limit	-	Notes
f GHz Low Ch 1.855 1.855	on: Horn T59 S SG reading (dBm) 10.3	Substitution, 4 Ant. Pol. (H/V) V	fft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 17.33	Limit (dBm)	(dB) -15.7	Notes
f GHz Low Ch 1.855 1.855 Mid Ch	on: Horn T59 S SG reading (dBm) 10.3 11.3	Substitution, 4 Ant. Pol. (H/V) V H	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 17.33 18.34	Limit (dBm) 33.0 33.0	(dB) -15.7 -14.7	Notes
f GHz Low Ch 1.855 1.855 Mid Ch 1.880	on: Horn T59 S SG reading (dBm) 10.3 11.3 10.2	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 17.33 18.34 17.21	Limit (dBm) 33.0 33.0 33.0	(dB) -15.7 -14.7 -15.8	Notes
f GHz Low Ch 1.855 1.855 Mid Ch	on: Horn T59 S SG reading (dBm) 10.3 11.3	Substitution, 4 Ant. Pol. (H/V) V H	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 17.33 18.34	Limit (dBm) 33.0 33.0	(dB) -15.7 -14.7	Notes
f GHz Low Ch 1.855 1.855 Mid Ch 1.880 1.880	on: Horn T59 S SG reading (dBm) 10.3 11.3 10.2	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 17.33 18.34 17.21	Limit (dBm) 33.0 33.0 33.0	(dB) -15.7 -14.7 -15.8	Notes
ubstituti f GHz Low Ch 1.855 1.855 Mid Ch 1.880	on: Horn T59 S SG reading (dBm) 10.3 11.3 10.2	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 17.33 18.34 17.21	Limit (dBm) 33.0 33.0 33.0	(dB) -15.7 -14.7 -15.8	Notes

Page 773 of 929

QPSK EIRP POWER FOR LTE BAND 2 (15.0MHZ BANDWIDTH)

ompany								
roject #:		15U21635						
ate:		12/17/2015						
est Engi		G. Chan						
onfigura		EUT only						
lode:			SK 15MHz BW					
		nd Chamber (Substitution, 4		/n 245182-003; SU	COFLEX 1	04PEA)		
ubstituti f	on: Horn T59 S	Substitution, 4	4ft SMA Cable (s Cable Loss	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
ubstituti f GHz	on: Horn T59 S	Substitution, 4	4ft SMA Cable (s		-		Margin EIRP (dB)	Notes
ubstituti f GHz Low Ch	on: Horn T59 S SG reading (dBm)	ubstitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.858	on: Horn T59 S SG reading (dBm) 11.8	Ant. Pol. (H/V)	tft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.04	EIRP (dBm) 18.81	Limit (dBm)	(dB) -14.2	Notes
ubstituti f GHz Low Ch	on: Horn T59 S SG reading (dBm)	ubstitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.858 1.858 Mid Ch	on: Horn T59 S SG reading (dBm) 11.8 12.2	Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04	EIRP (dBm) 18.81 19.28	Limit (dBm) 33.0 33.0	(dB) -14.2 -13.7	Notes
f GHz Low Ch 1.858 1.858 Mid Ch 1.880	on: Horn T59 S SG reading (dBm) 11.8 12.2 11.3	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 18.81 19.28 18.32	Limit (dBm) 33.0 33.0 33.0	(dB) -14.2 -13.7 -14.7	Notes
f GHz Low Ch 1.858 1.858 Mid Ch	on: Horn T59 S SG reading (dBm) 11.8 12.2	Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04	EIRP (dBm) 18.81 19.28	Limit (dBm) 33.0 33.0	(dB) -14.2 -13.7	Notes
ubstituti f GHz Low Ch 1.858 1.858 Mid Ch 1.880 1.880	on: Horn T59 S SG reading (dBm) 11.8 12.2 11.3	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 18.81 19.28 18.32	Limit (dBm) 33.0 33.0 33.0	(dB) -14.2 -13.7 -14.7	Notes
f GHz Low Ch 1.858 1.858 Mid Ch 1.880	on: Horn T59 S SG reading (dBm) 11.8 12.2 11.3	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 18.81 19.28 18.32	Limit (dBm) 33.0 33.0 33.0	(dB) -14.2 -13.7 -14.7	Notes

Page 774 of 929

16QAM EIRP POWER FOR LTE BAND 2 (15.0MHZ BANDWIDTH)

Company	:							
roject #		15U21635						
Date:		12/17/2015						
rest Engi		G. Chan						
Configura		EUT only						
Johnguna Node:			QAM 15MHz BW					
	g. 110111 1002, a	nd Chamber (o onn oubles					
Substitut				s/n 245182-003; SU	COFLEX 1	04PEA)		
Substitut	ion: Horn T59 S			s/n 245182-003; SU Antenna Gain		04PEA)	Margin EIRP	Notes
		Substitution, 4	ft SMA Cable (s		-		Margin EIRP (dB)	Notes
f	ion: Horn T59 S	Substitution, 4 Ant. Pol.	ft SMA Cable (s	Antenna Gain	EIRP	Limit		Notes
f GHz	ion: Horn T59 S	Substitution, 4 Ant. Pol.	ft SMA Cable (s	Antenna Gain	EIRP	Limit		Notes
f GHz Low Ch	ion: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.858 1.858	ion: Horn T59 S SG reading (dBm) 9.6	Substitution, 4 Ant. Pol. (H/V) V	fft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.04	EIRP (dBm) 16.68	Limit (dBm)	(dB) -16.3	Notes
f GHz 1.858 1.858 Mid Ch	SG reading (dBm) 9.6 11.3	Substitution, 4 Ant. Pol. (H/V) V H	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04	EIRP (dBm) 16.68 18.33	Limit (dBm) 33.0 33.0	(dB) -16.3 -14.7	Notes
f GHz Low Ch 1.858 1.858 Mid Ch 1.880	SG reading (dBm) 9.6 11.3 10.0	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 16.68 18.33 17.01	Limit (dBm) 33.0 33.0 33.0	(dB) -16.3 -14.7 -16.0	Notes
f GHz 1.858 1.858 Mid Ch	SG reading (dBm) 9.6 11.3	Substitution, 4 Ant. Pol. (H/V) V H	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04	EIRP (dBm) 16.68 18.33	Limit (dBm) 33.0 33.0	(dB) -16.3 -14.7	Notes
f GHz Low Ch 1.858 1.858 Mid Ch 1.880	SG reading (dBm) 9.6 11.3 10.0	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 16.68 18.33 17.01	Limit (dBm) 33.0 33.0 33.0	(dB) -16.3 -14.7 -16.0	Notes
f GHz Low Ch 1.858 1.858 Mid Ch 1.880 1.880	SG reading (dBm) 9.6 11.3 10.0	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 16.68 18.33 17.01	Limit (dBm) 33.0 33.0 33.0	(dB) -16.3 -14.7 -16.0	Notes

Page 775 of 929

QPSK EIRP POWER FOR LTE BAND 2 (20.0MHZ BANDWIDTH)

ompany								
roject #:		15U21635						
ate:		12/17/2015						
est Engi	neer:	G. Chan						
onfigura		EUT only						
lode:			SK 20MHz BW					
eceiving			G SMA Cables 4ft SMA Cable (s	s/n 245182-003; SU	COFLEX 1	04PEA)		
eceiving	: Horn T862, a			s/n 245182-003; SU Antenna Gain		04PEA) Limit	Margin EIRP	Notes
eceiving ubstituti	9: Horn T862, a on: Horn T59 S	Substitution, 4	ft SMA Cable (s				Margin EIRP (dB)	Notes
eceiving ubstituti f GHz Low Ch	: Horn T862, a on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.860	: Horn T862, a on: Horn T59 S SG reading (dBm) 11.5	Substitution, 4 Ant. Pol. (H/V) V	fft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.04	EIRP (dBm) 18.53	Limit (dBm)	(dB) -14.5	Notes
eceiving ubstituti f GHz Low Ch	: Horn T862, a on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.860 1.860	: Horn T862, a on: Horn T59 S SG reading (dBm) 11.5	Substitution, 4 Ant. Pol. (H/V) V	fft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.04	EIRP (dBm) 18.53	Limit (dBm)	(dB) -14.5	Notes
f GHz Low Ch 1.860	: Horn T862, a on: Horn T59 S SG reading (dBm) 11.5	Substitution, 4 Ant. Pol. (H/V) V	fft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.04	EIRP (dBm) 18.53	Limit (dBm)	(dB) -14.5	Notes
f GHz Low Ch 1.860 Mid Ch	y: Horn T862, a on: Horn T59 S SG reading (dBm) 11.5 12.2	Substitution, 4 Ant. Pol. (H/V) V H	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04	EIRP (dBm) 18.53 19.25	Limit (dBm) 33.0 33.0	(dB) -14.5 -13.7	Notes
f GHz Low Ch 1.860 Mid Ch 1.880 1.880	: Horn T862, a on: Horn T59 S SG reading (dBm) 11.5 12.2 11.9	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.98 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 18.53 19.25 18.94	Limit (dBm) 33.0 33.0 33.0	(dB) -14.5 -13.7 -14.1	Notes
f GHz Low Ch 1.860 1.860 Mid Ch 1.880	: Horn T862, a on: Horn T59 S SG reading (dBm) 11.5 12.2 11.9	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.98 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 18.53 19.25 18.94	Limit (dBm) 33.0 33.0 33.0	(dB) -14.5 -13.7 -14.1	Notes

Page 776 of 929

16QAM EIRP POWER FOR LTE BAND 2 (20.0MHZ BANDWIDTH)

ompany	r.							
roject #		15U21635						
ate:		12/17/2015						
est Eng		G. Chan						
-								
onfigura lode:		EUT only	SK 20MHz BW					
	ipment:							
	g: Horn T862, a	ad Obersheer						
	-							
ubstitut	-			s/n 245182-003; SU	COFLEX 1	04PEA)		
ubstitut	-			s/n 245182-003; SU	COFLEX 1	04PEA)		
ubstitut f	-			s/n 245182-003; SU Antenna Gain	COFLEX 1	04PEA) Limit	Margin EIRP	Notes
	ion: Horn T59 S	Substitution, 4	ft SMA Cable (s				Margin EIRP (dB)	Notes
f	ion: Horn T59 S	Substitution, 4 Ant. Pol.	ft SMA Cable (s	Antenna Gain	EIRP	Limit	-	Notes
f GHz	ion: Horn T59 S	Substitution, 4 Ant. Pol.	ft SMA Cable (s	Antenna Gain	EIRP	Limit	-	Notes
f GHz Low Ch	ion: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.860 1.860	SG reading (dBm)	Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.04	EIRP (dBm) 17.46	Limit (dBm)	(dB) -15.5	Notes
f GHz Low Ch 1.860 1.860 Mid Ch	ion: Horn T59 S SG reading (dBm) 10.4 11.3	Substitution, 4 Ant. Pol. (H/V) V H	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04	EIRP (dBm) 17.46 18.31	Limit (dBm) 33.0 33.0	(dB) -15.5 -14.7	Notes
f GHz Low Ch 1.860 1.860 Mid Ch 1.880	ion: Horn T59 \$ SG reading (dBm) 10.4 11.3 10.2	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 17.46 18.31 17.20	Limit (dBm) 33.0 33.0 33.0	(dB) -15.5 -14.7 -15.8	Notes
f GHz Low Ch 1.860 1.860 Mid Ch	ion: Horn T59 S SG reading (dBm) 10.4 11.3	Substitution, 4 Ant. Pol. (H/V) V H	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04	EIRP (dBm) 17.46 18.31	Limit (dBm) 33.0 33.0	(dB) -15.5 -14.7	Notes
f GHz Low Ch 1.860 1.860 Mid Ch 1.880 1.880	ion: Horn T59 S SG reading (dBm) 10.4 11.3 10.2 11.1	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 17.46 18.31 17.20	Limit (dBm) 33.0 33.0 33.0	(dB) -15.5 -14.7 -15.8	Notes
f GHz Low Ch 1.860 1.860 Mid Ch 1.880 1.880 1.880	ion: Horn T59 S SG reading (dBm) 10.4 11.3 10.2 11.1	Substitution, 4 Ant. Pol. (H/V) V H V H	fft SMA Cable (s Cable Loss (dB) 0.98 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03 8.03 8.03	EIRP (dBm) 17.46 18.31 17.20 18.14	Limit (dBm) 33.0 33.0 33.0 33.0	(dB) -15.5 -14.7 -15.8 -14.9	Notes
f GHz Low Ch 1.860 1.860 Mid Ch 1.880 1.880	ion: Horn T59 S SG reading (dBm) 10.4 11.3 10.2 11.1	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 17.46 18.31 17.20	Limit (dBm) 33.0 33.0 33.0	(dB) -15.5 -14.7 -15.8	Notes

Page 777 of 929

9.2.2. LTE BAND 4

QPSK EIRP POWER FOR LTE BAND 4 (1.4MHZ BANDWIDTH)

Company:								
Project #:		15U21635						
Date:		12/18/2015						
est Engi	neer:	G. Chan						
onfigura	tion:	EUT only						
/lode:		LTE Band 4 QP	SK 1.4MHz BW					
ubstituti	on: Horn T59 S	Substitution, 4		/n 245182-003; SU				
-				/n 245182-003; SU Antenna Gain (dBi)	EIRP	04PEA) Limit (dBm)	Margin EIRP (dB)	Notes
f GHz	on: Horn T59 S	Substitution, 4	4ft SMA Cable (s	Antenna Gain	EIRP	Limit		Notes
ubstituti f GHz	on: Horn T59 S	Substitution, 4	4ft SMA Cable (s	Antenna Gain	EIRP	Limit		Notes
ubstituti f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.711	on: Horn T59 S SG reading (dBm) 8.3	Ant. Pol. (H/V)	tft SMA Cable (s Cable Loss (dB) 0.95	Antenna Gain (dBi) 8.27	EIRP (dBm)	Limit (dBm) 30.0	(dB) -14.4	Notes
f GHz Low Ch 1.711 1.711	on: Horn T59 S SG reading (dBm) 8.3	Ant. Pol. (H/V)	tft SMA Cable (s Cable Loss (dB) 0.95	Antenna Gain (dBi) 8.27	EIRP (dBm)	Limit (dBm) 30.0	(dB) -14.4	Notes
f GHz Low Ch 1.711 1.711 Mid Ch	on: Horn T59 S SG reading (dBm) 8.3 10.6	Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.27 8.27	EIRP (dBm) 15.61 17.92	Limit (dBm) 30.0 30.0	(dB) -14.4 -12.1	Notes
ubstituti f GHz Low Ch 1.711 1.711 Mid Ch 1.733 1.733	on: Horn T59 S SG reading (dBm) 8.3 10.6 7.8	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.27 8.27 8.23	EIRP (dBm) 15.61 17.92	Limit (dBm) 30.0 30.0 30.0	(dB) -14.4 -12.1 -14.9	Notes
f GHz Low Ch 1.711 1.711 Mid Ch 1.733	on: Horn T59 S SG reading (dBm) 8.3 10.6 7.8	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.27 8.27 8.23	EIRP (dBm) 15.61 17.92	Limit (dBm) 30.0 30.0 30.0	(dB) -14.4 -12.1 -14.9	Notes

Page 778 of 929

16QAM EIRP POWER FOR LTE BAND 4 (1.4MHZ BANDWIDTH)

ompany	:							
roject #:		15U21635						
)ate:		12/18/2015						
est Eng	ineer:	G. Chan						
Configura		EUT only						
/lode:			QAM 1.4MHz BW					
ubstitut	ion: Horn T59 S	Substitution, 4	4ft SMA Cable (s	/n 245182-003; SU	COFLEX 1	04PEA)		
f	ion: Horn T59 S	Substitution, 4	4ft SMA Cable (s Cable Loss	/n 245182-003; SU Antenna Gain	COFLEX 1	04PEA) Limit	Margin EIRP	Notes
							Margin EIRP (dB)	Notes
f GHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.711	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 8.27	EIRP (dBm) 14.55	Limit (dBm) 30.0	(dB) -15.4	Notes
f GHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.711 1.711	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 8.27	EIRP (dBm) 14.55	Limit (dBm) 30.0	(dB) -15.4	Notes
f GHz Low Ch 1.711 1.711 Mid Ch	SG reading (dBm) 7.2 9.7	Ant. Pol. (H/V)	Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.27 8.27	EIRP (dBm) 14.55 16.97	Limit (dBm) 30.0	(dB) -15.4 -13.0	Notes
f GHz Low Ch 1.711 1.711	SG reading (dBm)	Ant. Pol. (H/V) V H	Cable Loss (dB)	Antenna Gain (dBi) 8.27	EIRP (dBm) 14.55	Limit (dBm) 30.0 30.0	(dB) -15.4	Notes
f GHz Low Ch 1.711 1.711 Mid Ch 1.733 1.733	SG reading (dBm) 7.2 9.7 6.9	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.27 8.27 8.23	EIRP (dBm) 14.55 16.97 14.21	Limit (dBm) 30.0 30.0 30.0	(dB) -15.4 -13.0 -15.8	Notes
f GHz Low Ch 1.711 1.711 Mid Ch 1.733 1.733 High Ch	SG reading (dBm) 7.2 9.7 6.9 9.9	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.95 0.95 0.95	Antenna Gain (dBi) 8.27 8.27 8.23 8.23 8.23	EIRP (dBm) 14.55 16.97 14.21 17.20	Limit (dBm) 30.0 30.0 30.0 30.0	(dB) -15.4 -13.0 -15.8 -12.8	Notes
f GHz Low Ch 1.711 1.711 Mid Ch 1.733 1.733	SG reading (dBm) 7.2 9.7 6.9	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.27 8.27 8.23	EIRP (dBm) 14.55 16.97 14.21	Limit (dBm) 30.0 30.0 30.0	(dB) -15.4 -13.0 -15.8	Notes

Page 779 of 929

QPSK EIRP POWER FOR LTE BAND 4 (3.0MHZ BANDWIDTH)

ompany	:							
roject #:		15U21635						
)ate:		12/18/2015						
est Eng	ineer:	G. Chan						
Configura		EUT only						
/lode:		LTE Band 4 QP	SK 3MHz BW					
ubstitut	ion: Horn T59 S	Substitution, 4	G SMA Cables 4ft SMA Cable (s	/n 245182-003; SU	COFLEX 1	04PEA)		
f	SG reading	Ant. Pol.	4ft SMA Cable (s Cable Loss	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
f GHz			4ft SMA Cable (s				Margin EIRP (dB)	Notes
f GHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz	SG reading	Ant. Pol.	4ft SMA Cable (s Cable Loss	Antenna Gain	EIRP	Limit		Notes
f GHz Low Ch 1.712 1.712	SG reading (dBm) 8.2	Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi) 8.27	EIRP (dBm) 15.54	Limit (dBm)	(dB) -14.5	Notes
f GHz Low Ch 1.712 1.712 Mid Ch	SG reading (dBm) 8.2 10.3	Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.27 8.27	EIRP (dBm) 15.54 17.62	Limit (dBm) 30.0 30.0	(dB) -14.5 -12.4	Notes
f GHz Low Ch 1.712 1.712 Mid Ch 1.733	SG reading (dBm) 8.2 10.3 7.9	Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.27 8.27 8.23	EIRP (dBm) 15.54 17.62 15.19	Limit (dBm) 30.0 30.0 30.0	(dB) -14.5 -12.4 -14.8	Notes
f GHz Low Ch 1.712 1.712 Mid Ch	SG reading (dBm) 8.2 10.3	Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.27 8.27	EIRP (dBm) 15.54 17.62	Limit (dBm) 30.0 30.0	(dB) -14.5 -12.4	Notes
f GHz Low Ch 1.712 1.712 Mid Ch 1.733 1.733 High Ch	SG reading (dBm) 8.2 10.3 7.9 10.6	Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95 0.95	Antenna Gain (dBi) 8.27 8.27 8.23 8.23 8.23	EIRP (dBm) 15.54 17.62 15.19 17.92	Limit (dBm) 30.0 30.0 30.0 30.0	(dB) -14.5 -12.4 -14.8 -12.1	Notes
f GHz Low Ch 1.712 1.712 Mid Ch 1.733 1.733	SG reading (dBm) 8.2 10.3 7.9	Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.27 8.27 8.23	EIRP (dBm) 15.54 17.62 15.19	Limit (dBm) 30.0 30.0 30.0	(dB) -14.5 -12.4 -14.8	Notes

Page 780 of 929

16QAM EIRP POWER FOR LTE BAND 4 (3.0MHZ BANDWIDTH)

ompany		151101005						
roject #:		15U21635						
ate:		12/18/2015						
est Engi		G. Chan						
onfigura	ation:	EUT only						
lode:		LTE Band 4 160	QAM 3MHz BW					
			G SMA Cables 4ft SMA Cable (s	s/n 245182-003; SU	COFLEX 1	04PEA)		
f	ion: Horn T59 S	Substitution, 4	4ft SMA Cable (s	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
f GHz	ion: Horn T59 S	Substitution, 4	4ft SMA Cable (s				Margin EIRP (dB)	Notes
f	ion: Horn T59 S	Substitution, 4	4ft SMA Cable (s	Antenna Gain	EIRP	Limit		Notes
f GHz Low Ch	ion: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.712 1.712	ion: Horn T59 S SG reading (dBm) 7.2	Substitution, 4 Ant. Pol. (H/V) V	4ft SMA Cable (s Cable Loss (dB) 0.95	Antenna Gain (dBi) 8.27	EIRP (dBm) 14.56	Limit (dBm)	(dB) -15.4	Notes
f GHz Low Ch 1.712 1.712 Mid Ch	SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.27 8.27	EIRP (dBm) 14.56 16.90	Limit (dBm) 30.0 30.0	(dB) -15.4 -13.1	Notes
f GHz Low Ch 1.712 1.712 Mid Ch 1.733	SG reading (dBm) 7.2 9.6 7.0	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.27 8.27 8.23	EIRP (dBm) 14.56 16.90 14.27	Limit (dBm) 30.0 30.0 30.0	(dB) -15.4 -13.1 -15.7	Notes
f GHz Low Ch 1.712 1.712 Mid Ch	SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.27 8.27	EIRP (dBm) 14.56 16.90	Limit (dBm) 30.0 30.0	(dB) -15.4 -13.1	Notes
f GHz Low Ch 1.712 1.712 Mid Ch 1.733 1.733	SG reading (dBm) 7.2 9.6 7.0	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.27 8.27 8.23	EIRP (dBm) 14.56 16.90 14.27	Limit (dBm) 30.0 30.0 30.0	(dB) -15.4 -13.1 -15.7	Notes
f GHz Low Ch 1.712 1.712 Mid Ch 1.733	SG reading (dBm) 7.2 9.6 7.0	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.27 8.27 8.23	EIRP (dBm) 14.56 16.90 14.27	Limit (dBm) 30.0 30.0 30.0	(dB) -15.4 -13.1 -15.7	Notes

Page 781 of 929

QPSK EIRP POWER FOR LTE BAND 4 (5.0MHZ BANDWIDTH)

ompany	:							
roject #:		15U21635						
ate:		12/18/2015						
est Eng	ineer:	G. Chan						
onfigura		EUT only						
lode:		LTE Band 4 QP	SK 5MHz BW					
ubstitut	ion: Horn T59 §	Substitution, 4	4ft SMA Cable (s	/n 245182-003; SU	COFLEX 1	04PEA)		
f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
f GHz							Margin EIRP (dB)	Notes
f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit		Notes
f GHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.713 1.713	SG reading (dBm) 8.1	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 8.27	EIRP (dBm) 15.39	Limit (dBm)	(dB) -14.6	Notes
f GHz Low Ch 1.713 1.713 Mid Ch	SG reading (dBm) 8.1 10.5	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.27 8.27	EIRP (dBm) 15.39 17.81	Limit (dBm) 30.0 30.0	(dB) -14.6 -12.2	Notes
f GHz Low Ch 1.713 1.713 Mid Ch 1.733	SG reading (dBm) 8.1 10.5 8.0	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.27 8.27 8.23	EIRP (dBm) 15.39 17.81	Limit (dBm) 30.0 30.0 30.0	(dB) -14.6 -12.2 -14.8	Notes
f GHz Low Ch 1.713 1.713 Mid Ch	SG reading (dBm) 8.1 10.5	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.27 8.27	EIRP (dBm) 15.39 17.81	Limit (dBm) 30.0 30.0	(dB) -14.6 -12.2	Notes
f GHz Low Ch 1.713 1.713 Mid Ch 1.733 1.733 High Ch	SG reading (dBm) 8.1 10.5 8.0 10.9	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.95 0.95 0.95 0.95	Antenna Gain (dBi) 8.27 8.27 8.23 8.23 8.23	EIRP (dBm) 15.39 17.81 15.25 18.15	Limit (dBm) 30.0 30.0 30.0 30.0	(dB) -14.6 -12.2 -14.8 -11.9	Notes
f GHz Low Ch 1.713 1.713 Mid Ch 1.733 1.733	SG reading (dBm) 8.1 10.5 8.0	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.27 8.27 8.23	EIRP (dBm) 15.39 17.81	Limit (dBm) 30.0 30.0 30.0	(dB) -14.6 -12.2 -14.8	Notes

Page 782 of 929

16QAM EIRP POWER FOR LTE BAND 4 (5.0MHZ BANDWIDTH)

ompany								
roject #:		15U21635						
ate:		12/18/2015						
est Engi		G. Chan						
onfigura		EUT only						
ode:		LTE Band 4 160	QAM 5MHz BW					
bstitut	on: Horn T59 S	Substitution, 4		/n 245182-003; SU				
ubstitut f	on: Horn T59 S	Substitution, 4 Ant. Pol.	ft SMA Cable (s	Antenna Gain	EIRP	Limit	Margin EIRP (dB)	Notes
ubstitut f GHz	on: Horn T59 S	Substitution, 4	ft SMA Cable (s				Margin EIRP (dB)	Notes
ubstitut f	on: Horn T59 S	Substitution, 4 Ant. Pol.	ft SMA Cable (s	Antenna Gain	EIRP	Limit		Notes
ubstitut f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.713 1.713	on: Horn T59 S SG reading (dBm) 7.3	Substitution, 4 Ant. Pol. (H/V) V	fft SMA Cable (s Cable Loss (dB) 0.95	Antenna Gain (dBi) 8.27	EIRP (dBm) 14.59	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.713 1.713 Mid Ch	on: Horn T59 S SG reading (dBm) 7.3 9.6	Substitution, 4 Ant. Pol. (H/V) V H	fft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.27 8.27	EIRP (dBm) 14.59 16.88	Limit (dBm) 30.0 30.0	(dB) -15.4 -13.1	Notes
dbstitut f GHz Low Ch 1.713 1.713 Mid Ch 1.733	on: Horn T59 \$ SG reading (dBm) 7.3 9.6 6.9	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.27 8.27 8.27 8.23	EIRP (dBm) 14.59 16.88 14.15	Limit (dBm) 30.0 30.0 30.0	(dB) -15.4 -13.1 -15.9	Notes
f GHz Low Ch 1.713 1.713 Mid Ch	on: Horn T59 S SG reading (dBm) 7.3 9.6	Substitution, 4 Ant. Pol. (H/V) V H	fft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.27 8.27	EIRP (dBm) 14.59 16.88	Limit (dBm) 30.0 30.0	(dB) -15.4 -13.1	Notes
dbstitut f GHz Low Ch 1.713 1.713 Mid Ch 1.733	on: Horn T59 \$ SG reading (dBm) 7.3 9.6 6.9	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.27 8.27 8.27 8.23	EIRP (dBm) 14.59 16.88 14.15	Limit (dBm) 30.0 30.0 30.0	(dB) -15.4 -13.1 -15.9	Notes
ubstitut f GHz Low Ch 1.713 1.713 Mid Ch 1.733 1.733	on: Horn T59 \$ SG reading (dBm) 7.3 9.6 6.9	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.27 8.27 8.27 8.23	EIRP (dBm) 14.59 16.88 14.15	Limit (dBm) 30.0 30.0 30.0	(dB) -15.4 -13.1 -15.9	Notes

Page 783 of 929

QPSK EIRP POWER FOR LTE BAND 4 (10.0MHZ BANDWIDTH)

ompany		451104005						
roject #:		15U21635						
ate:		12/18/2015						
est Engi		G. Chan						
onfigura	ation:	EUT only						
lode:		LTE Band 4 QF	PSK 10MHz BW					
ubstituti		Substitution, 4	4ft SMA Cable (s	s/n 245182-003; SU			i i	
ubstituti	on: Horn T59 S	Substitution, 4	4ft SMA Cable (s	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
f GHz	ion: Horn T59 S	Substitution, 4	4ft SMA Cable (s				Margin EIRP (dB)	Notes
ubstituti	on: Horn T59 S	Substitution, 4	4ft SMA Cable (s	Antenna Gain	EIRP	Limit		Notes
f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.715 1.715	on: Horn T59 S SG reading (dBm) 7.4	Substitution, 4 Ant. Pol. (H/V) V	4ft SMA Cable (s Cable Loss (dB) 0.95	Antenna Gain (dBi) 8.26	EIRP (dBm) 14.69	Limit (dBm) 30.0	(dB)	Notes
f GHz Low Ch 1.715 1.715 Mid Ch	SG reading (dBm) 7.4 10.4	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.26 8.26	EIRP (dBm) 14.69 17.66	Limit (dBm) 30.0 30.0	(dB) -15.3 -12.3	Notes
f GHz Low Ch 1.715 1.715 Mid Ch 1.733	SG reading (dBm) 7.4 10.4 8.4	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95 0.95	Antenna Gain (dBi) 8.26 8.26 8.23	EIRP (dBm) 14.69 17.66 15.70	Limit (dBm) 30.0 30.0 30.0	(dB) -15.3 -12.3 -14.3	Notes
f GHz Low Ch 1.715 1.715 Mid Ch	SG reading (dBm) 7.4 10.4	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.26 8.26	EIRP (dBm) 14.69 17.66	Limit (dBm) 30.0 30.0	(dB) -15.3 -12.3	Notes
f GHz Low Ch 1.715 1.715 Mid Ch 1.733	SG reading (dBm) 7.4 10.4 8.4	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95 0.95	Antenna Gain (dBi) 8.26 8.26 8.23	EIRP (dBm) 14.69 17.66 15.70	Limit (dBm) 30.0 30.0 30.0	(dB) -15.3 -12.3 -14.3	Notes
f GHz Low Ch 1.715 1.715 Mid Ch 1.733 1.733	SG reading (dBm) 7.4 10.4 8.4	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95 0.95	Antenna Gain (dBi) 8.26 8.26 8.23	EIRP (dBm) 14.69 17.66 15.70	Limit (dBm) 30.0 30.0 30.0	(dB) -15.3 -12.3 -14.3	Notes

Page 784 of 929

16QAM EIRP POWER FOR LTE BAND 4 (10.0MHZ BANDWIDTH)

Company	r:							
roject #		15U21635						
)ate:		12/18/2015						
lest Eng		G. Chan						
Configura		EUT only						
/onliguia /lode:			QAM 10MHz BW					
	g: Horn T862, a	nd Chamber	G SMA Cables					
	g: Horn T862, a	nd Chamber (G SMA Cables					
ubstitut	ion: Horn T59 S	Substitution, 4	ft SMA Cable (s	s/n 245182-003; SU	COFLEX 1	04PEA)		
					-			
f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
f GHz					-		Margin EIRP (dB)	Notes
f GHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.715	SG reading (dBm) 6.3	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 8.26	EIRP (dBm) 13.59	Limit (dBm) 30.0	(dB)	Notes
f GHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.715 1.715	SG reading (dBm) 6.3	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 8.26	EIRP (dBm) 13.59	Limit (dBm) 30.0	(dB)	Notes
f GHz Low Ch 1.715	SG reading (dBm) 6.3	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 8.26	EIRP (dBm) 13.59	Limit (dBm) 30.0	(dB)	Notes
f GHz Low Ch 1.715 1.715 Mid Ch	SG reading (dBm) 6.3 9.5	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.26 8.26	EIRP (dBm) 13.59 16.80	Limit (dBm) 30.0 30.0	(dB) -16.4 -13.2	Notes
f GHz Low Ch 1.715 1.715 Mid Ch 1.733 1.733	SG reading (dBm) 6.3 9.5 7.6 9.8	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.26 8.26 8.23	EIRP (dBm) 13.59 16.80 14.84	Limit (dBm) 30.0 30.0 30.0	(dB) -16.4 -13.2 -15.2	Notes
f GHz Low Ch 1.715 1.715 Mid Ch 1.733 1.733 High Ch	SG reading (dBm) 6.3 9.5 7.6 9.8	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.95 0.95 0.95 0.95	Antenna Gain (dBi) 8.26 8.26 8.23 8.23 8.23	EIRP (dBm) 13.59 16.80 14.84 17.10	Limit (dBm) 30.0 30.0 30.0 30.0	(dB) -16.4 -13.2 -15.2 -12.9	Notes
f GHz Low Ch 1.715 1.715 Mid Ch 1.733 1.733	SG reading (dBm) 6.3 9.5 7.6 9.8	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.26 8.26 8.23	EIRP (dBm) 13.59 16.80 14.84	Limit (dBm) 30.0 30.0 30.0	(dB) -16.4 -13.2 -15.2	Notes

Page 785 of 929

QPSK EIRP POWER FOR LTE BAND 4 (15.0MHZ BANDWIDTH)

Company								
Project #:		15U21635						
Date:		12/18/2015						
Fest Engi	neer:	G. Chan						
Configura		EUT only						
Node:			SK 15MHz BW					
ubstituti			G SMA Cables 4ft SMA Cable (s	/n 245182-003; SU	COFLEX 1	04PEA)		
f	on: Horn T59 S	Ant. Pol.	4ft SMA Cable (s Cable Loss	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
f GHz	on: Horn T59 S	ubstitution, 4	4ft SMA Cable (s				Margin EIRP (dB)	Notes
f	on: Horn T59 S	Ant. Pol.	4ft SMA Cable (s Cable Loss	Antenna Gain	EIRP	Limit	_	Notes
f GHz Low Ch	on: Horn T59 S SG reading (dBm)	ubstitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.718 1.718	on: Horn T59 S SG reading (dBm) 7.6	Ant. Pol. (H/V)	tft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi) 8.26	EIRP (dBm) 14.86	Limit (dBm) 30.0	(dB)	Notes
f GHz Low Ch 1.718 1.718 Mid Ch	on: Horn T59 S SG reading (dBm) 7.6 9.5	Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.26 8.26	EIRP (dBm) 14.86 16.76	Limit (dBm) 30.0 30.0	(dB) -15.1 -13.2	Notes
f GHz Low Ch 1.718 1.718 Mid Ch 1.733	on: Horn T59 S SG reading (dBm) 7.6 9.5 8.6	Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.26 8.26 8.23	EIRP (dBm) 14.86 16.76 15.84	Limit (dBm) 30.0 30.0 30.0	(dB) -15.1 -13.2 -14.2	Notes
f GHz Low Ch 1.718 1.718 Mid Ch	on: Horn T59 S SG reading (dBm) 7.6 9.5	Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.26 8.26	EIRP (dBm) 14.86 16.76	Limit (dBm) 30.0 30.0	(dB) -15.1 -13.2	Notes
f GHz Low Ch 1.718 1.718 Mid Ch 1.733	on: Horn T59 S SG reading (dBm) 7.6 9.5 8.6	Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.26 8.26 8.23	EIRP (dBm) 14.86 16.76 15.84	Limit (dBm) 30.0 30.0 30.0	(dB) -15.1 -13.2 -14.2	Notes
f GHz Low Ch 1.718 1.718 Mid Ch 1.733 1.733	on: Horn T59 S SG reading (dBm) 7.6 9.5 8.6	Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.26 8.26 8.23	EIRP (dBm) 14.86 16.76 15.84	Limit (dBm) 30.0 30.0 30.0	(dB) -15.1 -13.2 -14.2	Notes

Page 786 of 929

16QAM EIRP POWER FOR LTE BAND 4 (15.0MHZ BANDWIDTH)

ompany:								
roject #:		15U21635						
ate:		12/18/2015						
est Engi		G. Chan						
onfigura		EUT only						
lode:			SK 15MHz BW					
			G SMA Cables 4ft SMA Cable (s	s/n 245182-003; SU	COFLEX 1	04PEA)		
ubstituti f	on: Horn T59 S	Ant. Pol.	ft SMA Cable (s	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
ubstituti f GHz	on: Horn T59 S	ubstitution, 4	ft SMA Cable (s				Margin EIRP (dB)	Notes
ubstituti f GHz Low Ch	on: Horn T59 S SG reading (dBm)	ubstitution, 4 Ant. Pol. (H/V)	ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
ubstituti f GHz Low Ch 1.718	on: Horn T59 S SG reading (dBm) 6.4	Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB) 0.95	Antenna Gain (dBi) 8.26	EIRP (dBm) 13.73	Limit (dBm)	(dB)	Notes
ubstituti f GHz Low Ch	on: Horn T59 S SG reading (dBm)	ubstitution, 4 Ant. Pol. (H/V)	ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
ubstituti f GHz Low Ch 1.718 1.718	on: Horn T59 S SG reading (dBm) 6.4	Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB) 0.95	Antenna Gain (dBi) 8.26	EIRP (dBm) 13.73	Limit (dBm)	(dB)	Notes
ubstituti f GHz Low Ch 1.718	on: Horn T59 S SG reading (dBm) 6.4	Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB) 0.95	Antenna Gain (dBi) 8.26	EIRP (dBm) 13.73	Limit (dBm)	(dB)	Notes
dbstituti f GHz Low Ch 1.718 1.718 Mid Ch	on: Horn T59 S SG reading (dBm) 6.4 8.8	Ant. Pol. (H/V) V H	fft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.26 8.26	EIRP (dBm) 13.73 16.11	Limit (dBm) 30.0 30.0	(dB) -16.3 -13.9	Notes
ubstituti f GHz Low Ch 1.718 1.718 Mid Ch 1.733 1.733	on: Horn T59 S SG reading (dBm) 6.4 8.8 7.7	Ant. Pol. (H/V) V H	fft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.26 8.26 8.23	EIRP (dBm) 13.73 16.11 14.97	Limit (dBm) 30.0 30.0 30.0	(dB) -16.3 -13.9 -15.0	Notes
ubstituti f GHz Low Ch 1.718 1.718 Mid Ch 1.733	on: Horn T59 S SG reading (dBm) 6.4 8.8 7.7	Ant. Pol. (H/V) V H	fft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.26 8.26 8.23	EIRP (dBm) 13.73 16.11 14.97	Limit (dBm) 30.0 30.0 30.0	(dB) -16.3 -13.9 -15.0	Notes

Page 787 of 929

QPSK EIRP POWER FOR LTE BAND 4 (20.0MHZ BANDWIDTH)

Company	:							
Project #:		15U21635						
Date:		12/18/2015						
rest Engi	ineer:	G. Chan						
Configura		EUT only						
Node:			SK 20MHz BW					
ubstituti	-	nd Chamber Substitution, 4		s/n 245182-003; SU	COFLEX 1	04PEA)		
f	ion: Horn T59 SG reading	Substitution, 4	4ft SMA Cable (s Cable Loss	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
f GHz	ion: Horn T59 S	Substitution, 4	4ft SMA Cable (s				Margin EIRP (dB)	Notes
f GHz Low Ch	SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.720	SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V) V	tft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi) 8.25	EIRP (dBm)	Limit (dBm) 30.0	(dB) -15.0	Notes
f GHz Low Ch 1.720 1.720	SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.720 1.720 Mid Ch	SG reading (dBm) 7.7 10.1	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.25 8.25	EIRP (dBm) 15.03 17.40	Limit (dBm) 30.0 30.0	(dB) -15.0 -12.6	Notes
f GHz Low Ch 1.720 1.720 Mid Ch 1.733	SG reading (dBm) 7.7 10.1 8.3	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.25 8.25 8.23	EIRP (dBm) 15.03 17.40	Limit (dBm) 30.0 30.0 30.0	(dB) -15.0 -12.6 -14.4	Notes
f GHz Low Ch 1.720 1.720 Mid Ch	SG reading (dBm) 7.7 10.1	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.25 8.25	EIRP (dBm) 15.03 17.40	Limit (dBm) 30.0 30.0	(dB) -15.0 -12.6	Notes
f GHz Low Ch 1.720 1.720 Mid Ch 1.733 1.733	SG reading (dBm) 7.7 10.1 8.3	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.25 8.25 8.23	EIRP (dBm) 15.03 17.40	Limit (dBm) 30.0 30.0 30.0	(dB) -15.0 -12.6 -14.4	Notes
f GHz Low Ch 1.720 1.720 Mid Ch 1.733	SG reading (dBm) 7.7 10.1 8.3	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.25 8.25 8.23	EIRP (dBm) 15.03 17.40	Limit (dBm) 30.0 30.0 30.0	(dB) -15.0 -12.6 -14.4	Notes

Page 788 of 929

16QAM EIRP POWER FOR LTE BAND 4 (20.0MHZ BANDWIDTH)

ompany	:							
roject #:		15U21635						
ate:		12/18/2015						
est Engi		G. Chan						
Configura		EUT only						
lode:			DAM 20MHz BW					
		and Ohenneheney	O CMAA O-LI					
est Equ	ipinent.							
	g: Horn T862, a			/n 245182-003: SII				
				s/n 245182-003; SU	COFLEX 1	04PEA)		
	ion: Horn T59 S			s/n 245182-003; SU Antenna Gain		04PEA) Limit	Margin EIRP	Notes
ubstitut		Substitution, 4	ft SMA Cable (s				Margin EIRP (dB)	Notes
ubstitut f	ion: Horn T59 S	Substitution, 4	ft SMA Cable (s	Antenna Gain	EIRP	Limit	-	Notes
f GHz	ion: Horn T59 S	Substitution, 4	ft SMA Cable (s	Antenna Gain	EIRP	Limit	-	Notes
f GHz Low Ch	ion: Horn T59 S SG reading (dBm)	ubstitution, 4 Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.720 1.720	ion: Horn T59 S SG reading (dBm) 6.7	Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi) 8.25	EIRP (dBm) 13.99	Limit (dBm) 30.0	(dB)	Notes
f GHz Low Ch 1.720 1.720 Mid Ch	SG reading (dBm) 6.7 9.2	Ant. Pol. (H/V) V H	fft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.25 8.25	EIRP (dBm) 13.99 16.50	Limit (dBm) 30.0 30.0	(dB) -16.0 -13.5	Notes
f GHz Low Ch 1.720 1.720 Mid Ch 1.733	SG reading (dBm) 6.7 9.2 7.4	Ant. Pol. (H/V) V H	fft SMA Cable (s Cable Loss (dB) 0.95 0.95 0.95	Antenna Gain (dBi) 8.25 8.25 8.23	EIRP (dBm) 13.99 16.50 14.66	Limit (dBm) 30.0 30.0 30.0	(dB) -16.0 -13.5 -15.3	Notes
f GHz Low Ch 1.720 1.720 Mid Ch	SG reading (dBm) 6.7 9.2	Ant. Pol. (H/V) V H	fft SMA Cable (s Cable Loss (dB) 0.95 0.95	Antenna Gain (dBi) 8.25 8.25	EIRP (dBm) 13.99 16.50	Limit (dBm) 30.0 30.0	(dB) -16.0 -13.5	Notes
f GHz Low Ch 1.720 1.720 Mid Ch 1.733	SG reading (dBm) 6.7 9.2 7.4	Ant. Pol. (H/V) V H	fft SMA Cable (s Cable Loss (dB) 0.95 0.95 0.95	Antenna Gain (dBi) 8.25 8.25 8.23	EIRP (dBm) 13.99 16.50 14.66	Limit (dBm) 30.0 30.0 30.0	(dB) -16.0 -13.5 -15.3	Notes
f GHz Low Ch 1.720 1.720 Mid Ch 1.733 1.733	SG reading (dBm) 6.7 9.2 7.4	Ant. Pol. (H/V) V H	fft SMA Cable (s Cable Loss (dB) 0.95 0.95 0.95	Antenna Gain (dBi) 8.25 8.25 8.23	EIRP (dBm) 13.99 16.50 14.66	Limit (dBm) 30.0 30.0 30.0	(dB) -16.0 -13.5 -15.3	Notes

Page 789 of 929

9.2.3. LTE BAND 5

QPSK EIRP POWER FOR LTE BAND 5 (1.4MHZ BANDWIDTH)

Company:										
Project #:		15U21635								
Date:		12/17/2015								
Test Engi		G. Chan								
Configura Node:		EUT Only	PSK 1.4MHz B\							
est Equi	oment: : Sunol T899,	and Chambe	ar G Cable							
vecerving	. Sunoi 1099,	anu chambe								
		l: 00022117, 4	4ft SMA Cable	e (s/n 245182-00) Antenna Gain		LEX 104P		EIRP Limit	Margin	Notes
Substituti	on: Dipole S/N	l: 00022117, 4	4ft SMA Cable		- -			EIRP Limit (dBm)	Margin (dB)	Notes
Substituti f MHz Low Ch	on: Dipole S/N SG reading (dBm)	: 00022117, / Ant. Pol. (H/V)	4ft SMA Cable Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	(dBm)	(dB)	Notes
f MHz Low Ch 824.70	on: Dipole S/N SG reading (dBm) 10.01	: 00022117, 4 Ant. Pol. (H/V) V	4ft SMA Cable Cable Loss (dB) 0.6	Antenna Gain (dBd)	ERP (dBm) 9.39	EIRP (dBm)	ERP Limit (dBm) 38.45	(dBm) 40.60	(dB) -29.1	Notes
Substituti f MHz Low Ch	on: Dipole S/N SG reading (dBm)	: 00022117, / Ant. Pol. (H/V)	4ft SMA Cable Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	(dBm)	(dB)	Notes
f MHz Low Ch 824.70 824.70	on: Dipole S/N SG reading (dBm) 10.01	: 00022117, 4 Ant. Pol. (H/V) V	4ft SMA Cable Cable Loss (dB) 0.6	Antenna Gain (dBd)	ERP (dBm) 9.39	EIRP (dBm)	ERP Limit (dBm) 38.45	(dBm) 40.60	(dB) -29.1	Notes
f MHz Low Ch 824.70	on: Dipole S/N SG reading (dBm) 10.01	: 00022117, 4 Ant. Pol. (H/V) V	4ft SMA Cable Cable Loss (dB) 0.6	Antenna Gain (dBd)	ERP (dBm) 9.39	EIRP (dBm)	ERP Limit (dBm) 38.45	(dBm) 40.60	(dB) -29.1	Notes
f MHz Low Ch 824.70 824.70 Mid Ch	SG reading (dBm) 10.01 17.28	I: 00022117, 4 Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 9.39 16.66	EIRP (dBm) 11.54 18.81	ERP Limit (dBm) 38.45 38.45	(dBm) 40.60 40.60	(dB) -29.1 -21.8	Notes
f MHz Low Ch 824.70 824.70 Mid Ch 836.50 836.50	SG reading (dBm) 10.01 17.28 10.11	I: 00022117, / Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 9.39 16.66 9.49	EIRP (dBm) 11.54 18.81 11.64	ERP Limit (dBm) 38.45 38.45 38.45	(dBm) 40.60 40.60 40.60	(dB) -29.1 -21.8 -29.0	Notes
f MHz Low Ch 824.70 824.70 Mid Ch 836.50	SG reading (dBm) 10.01 17.28 10.11	I: 00022117, / Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 9.39 16.66 9.49	EIRP (dBm) 11.54 18.81 11.64	ERP Limit (dBm) 38.45 38.45 38.45	(dBm) 40.60 40.60 40.60	(dB) -29.1 -21.8 -29.0	Notes

Page 790 of 929

16QAM EIRP POWER FOR LTE BAND 5 (1.4MHZ BANDWIDTH)

ompany										
roject #:		15U21635								
ate:		12/17/2015								
est Eng		G. Chan								
onfigura		EUT Only								
lode:		LTE Band 5 1	6QAM 1.4MHz	BW						
			er G Cable 4ft SMA Cabl	le (s/n 245182-003		I FX 104P	FA)			
		l: 00022117,	4ft SMA Cab	e (s/n 245182-003 Antenna Gain	; SUCOF	LEX 104P		EIRP Limit	Margin	Notes
ubstitut	on: Dipole S/N	l: 00022117,	4ft SMA Cab	•	-			EIRP Limit (dBm)	Margin (dB)	Notes
ubstitut f MHz Low Ch	on: Dipole S/N SG reading (dBm)	l: 00022117, Ant. Pol. (H/V)	4ft SMA Cab Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	(dBm)	(dB)	Notes
f MHz Low Ch 824.70	on: Dipole S/N SG reading (dBm) 9.26	l: 00022117, Ant. Pol. (H/V) V	4ft SMA Cable Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm) 8.64	EIRP (dBm) 10.79	ERP Limit (dBm) 38.45	(dBm) 40.60	(dB) -29.8	Notes
ubstitut f MHz Low Ch	on: Dipole S/N SG reading (dBm)	l: 00022117, Ant. Pol. (H/V)	4ft SMA Cab Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	(dBm)	(dB)	Notes
f MHz Low Ch 824.70 824.70	on: Dipole S/N SG reading (dBm) 9.26	l: 00022117, Ant. Pol. (H/V) V	4ft SMA Cable Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm) 8.64	EIRP (dBm) 10.79	ERP Limit (dBm) 38.45	(dBm) 40.60	(dB) -29.8	Notes
f MHz Low Ch 824.70	on: Dipole S/N SG reading (dBm) 9.26	l: 00022117, Ant. Pol. (H/V) V	4ft SMA Cable Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm) 8.64	EIRP (dBm) 10.79	ERP Limit (dBm) 38.45	(dBm) 40.60	(dB) -29.8	Notes
f MHz Low Ch 824.70 824.70 Mid Ch	on: Dipole S/N SG reading (dBm) 9.26 16.57	I: 00022117, Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 8.64 15.95	EIRP (dBm) 10.79 18.10	ERP Limit (dBm) 38.45 38.45	(dBm) 40.60 40.60	(dB) -29.8 -22.5	Notes
ubstitut f MHz Low Ch 824.70 824.70 824.70 Mid Ch 836.50 836.50	on: Dipole S/N SG reading (dBm) 9.26 16.57 9.16	l: 00022117, Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6 0.6	Antenna Gain (dBd) 0.0 0.0 0.0	ERP (dBm) 8.64 15.95 8.54	EIRP (dBm) 10.79 18.10 10.69	ERP Limit (dBm) 38.45 38.45 38.45	(dBm) 40.60 40.60 40.60	(dB) -29.8 -22.5 -29.9	Notes
f MHz Low Ch 824.70 824.70 Mid Ch 836.50	on: Dipole S/N SG reading (dBm) 9.26 16.57 9.16	l: 00022117, Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6 0.6	Antenna Gain (dBd) 0.0 0.0 0.0	ERP (dBm) 8.64 15.95 8.54	EIRP (dBm) 10.79 18.10 10.69	ERP Limit (dBm) 38.45 38.45 38.45	(dBm) 40.60 40.60 40.60	(dB) -29.8 -22.5 -29.9	Notes

Page 791 of 929

QPSK EIRP POWER FOR LTE BAND 5 (3.0MHZ BANDWIDTH)

ompany	:									
roject #:		15U21635								
ate:		12/17/2015								
est Engi	ineer:	G. Chan								
onfigura	ation:	EUT Only								
lode:		LTE Band 5 Q	PSK 3MHz BW							
Ibstituti			er G Cable 4ft SMA Cable	e (s/n 245182-003	; SUCOF	LEX 104P	EA)			
f	on: Dipole S/N	l: 00022117, Ant. Pol.	4ft SMA Cable	e (s/n 245182-003 Antenna Gain (dRd)	ERP	EIRP	ERP Limit	EIRP Limit	Margin (dP)	Notes
f MHz	ion: Dipole S/N	l: 00022117,	4ft SMA Cable					EIRP Limit (dBm)	Margin (dB)	Notes
f	on: Dipole S/N	l: 00022117, Ant. Pol.	4ft SMA Cable	Antenna Gain	ERP	EIRP	ERP Limit		-	Notes
f MHz Low Ch	SG reading (dBm)	l: 00022117, Ant. Pol. (H/V)	4ft SMA Cable Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	(dBm)	(dB)	Notes
f MHz Low Ch 825.50 825.50	on: Dipole S/N SG reading (dBm) 10.05	l: 00022117, Ant. Pol. (H/V) V	4ft SMA Cable Cable Loss (dB) 0.6	Antenna Gain (dBd)	ERP (dBm) 9.43	EIRP (dBm) 11.58	ERP Limit (dBm) 38.45	(dBm) 40.60	(dB) -29.0	Notes
f MHz Low Ch 825.50 825.50 Mid Ch	on: Dipole S/N SG reading (dBm) 10.05 17.46	I: 00022117, Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 9.43 16.84	EIRP (dBm) 11.58 18.99	ERP Limit (dBm) 38.45 38.45	(dBm) 40.60 40.60	(dB) -29.0 -21.6	Notes
f MHz Low Ch 825.50 825.50	on: Dipole S/N SG reading (dBm) 10.05	l: 00022117, Ant. Pol. (H/V) V	4ft SMA Cable Cable Loss (dB) 0.6	Antenna Gain (dBd)	ERP (dBm) 9.43	EIRP (dBm) 11.58	ERP Limit (dBm) 38.45	(dBm) 40.60	(dB) -29.0	Notes
f MHz Low Ch 825.50 825.50 825.50 Mid Ch 836.50 836.50	on: Dipole S/N SG reading (dBm) 10.05 17.46 9.68	l: 00022117, Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 9.43 16.84 9.06	EIRP (dBm) 11.58 18.99 11.21	ERP Limit (dBm) 38.45 38.45 38.45	(dBm) 40.60 40.60 40.60	(dB) -29.0 -21.6 -29.4	Notes
f MHz Low Ch 825.50 825.50 Mid Ch 836.50	on: Dipole S/N SG reading (dBm) 10.05 17.46 9.68	l: 00022117, Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 9.43 16.84 9.06	EIRP (dBm) 11.58 18.99 11.21	ERP Limit (dBm) 38.45 38.45 38.45	(dBm) 40.60 40.60 40.60	(dB) -29.0 -21.6 -29.4	Notes

Page 792 of 929

16QAM EIRP POWER FOR LTE BAND 5 (3.0MHZ BANDWIDTH)

ompany:										
Project #:		15U21635								
)ate:		12/17/2015								
lest Engi	neer:	G. Chan								
Configura	tion:	EUT Only								
lode:		LTE Band 5 16	GQAM 3MHz BV	V						
	: Sunol T899, on: Dipole S/N			e (s/n 245182-003	; SUCOF	LEX 104P	EA)			
Substituti	on: Dipole S/N SG reading	l: 00022117, - Ant. Pol.	4ft SMA Cable	` Antenna Gain	ERP	EIRP	ERP Limit	EIRP Limit	Margin	Notes
Substituti f MHz	on: Dipole S/N	l: 00022117, 4	4ft SMA Cabl		-			EIRP Limit (dBm)	Margin (dB)	Notes
Substituti f MHz Low Ch	on: Dipole S/N SG reading (dBm)	l: 00022117, - Ant. Pol. (H/V)	4ft SMA Cabl Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	(dBm)	(dB)	Notes
f MHz Low Ch 825.50	on: Dipole S/N SG reading (dBm) 9.32	l: 00022117, - Ant. Pol. (H/V) V	4ft SMA Cable Cable Loss (dB) 0.6	Antenna Gain (dBd)	ERP (dBm) 8.70	EIRP (dBm)	ERP Limit (dBm) 38.45	(dBm) 40.60	(dB) -29.7	Notes
f MHz Low Ch 825.50 825.50	on: Dipole S/N SG reading (dBm)	l: 00022117, - Ant. Pol. (H/V)	4ft SMA Cabl Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	(dBm)	(dB)	Notes
f MHz Low Ch 825.50 825.50 Mid Ch	SG reading (dBm) 9.32 16.85	I: 00022117, 4 Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 8.70 16.23	EIRP (dBm) 10.85 18.38	ERP Limit (dBm) 38.45 38.45	(dBm) 40.60 40.60	(dB) -29.7 -22.2	Notes
f MHz Low Ch 825.50 825.50 Mid Ch 836.50	on: Dipole S/N SG reading (dBm) 9.32 16.85 9.24	l: 00022117, . Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 8.70 16.23 8.62	EIRP (dBm) 10.85 18.38	ERP Limit (dBm) 38.45 38.45 38.45	(dBm) 40.60 40.60 40.60	(dB) -29.7 -22.2 -29.8	Notes
f MHz Low Ch 825.50 825.50 Mid Ch	SG reading (dBm) 9.32 16.85	I: 00022117, 4 Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 8.70 16.23	EIRP (dBm) 10.85 18.38	ERP Limit (dBm) 38.45 38.45	(dBm) 40.60 40.60	(dB) -29.7 -22.2	Notes
f MHz Low Ch 825.50 825.50 Mid Ch 836.50 836.50	on: Dipole S/N SG reading (dBm) 9.32 16.85 9.24	l: 00022117, . Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 8.70 16.23 8.62	EIRP (dBm) 10.85 18.38	ERP Limit (dBm) 38.45 38.45 38.45	(dBm) 40.60 40.60 40.60	(dB) -29.7 -22.2 -29.8	Notes
f MHz Low Ch 825.50 825.50 Mid Ch 836.50	on: Dipole S/N SG reading (dBm) 9.32 16.85 9.24	l: 00022117, . Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 8.70 16.23 8.62	EIRP (dBm) 10.85 18.38	ERP Limit (dBm) 38.45 38.45 38.45	(dBm) 40.60 40.60 40.60	(dB) -29.7 -22.2 -29.8	Notes

Page 793 of 929

QPSK EIRP POWER FOR LTE BAND 5 (5.0MHZ BANDWIDTH)

ompany										
roject #:		15U21635								
ate:		12/17/2015								
est Engi	neer:	G. Chan								
onfigura		EUT only								
lode:			PSK 5MHz BW							
ubstituti	on: Dipole S/N		4ft SMA Cable	e (s/n 245182-003			·	EIRP Limit	Margin	Notes
ubstituti f	on: Dipole S/N	Ant. Pol.	4ft SMA Cable Cable Loss	Antenna Gain	ERP	EIRP	ERP Limit	EIRP Limit	Margin	Notes
ubstituti f MHz	on: Dipole S/N		4ft SMA Cable				·	EIRP Limit (dBm)	Margin (dB)	Notes
f	on: Dipole S/N	Ant. Pol.	4ft SMA Cable Cable Loss	Antenna Gain	ERP	EIRP	ERP Limit		-	Notes
f MHz Low Ch 826.50	on: Dipole S/N SG reading (dBm)	Ant. Pol. (H/V)	4ft SMA Cable Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	(dBm)	(dB)	Notes
f MHz Low Ch 826.50 826.50	on: Dipole S/N SG reading (dBm) 9.91	Ant. Pol. (H/V)	4ft SMA Cable Cable Loss (dB) 0.6	Antenna Gain (dBd)	ERP (dBm) 9.29	EIRP (dBm) 11.44	ERP Limit (dBm) 38.45	(dBm) 40.60	(dB) -29.2	Notes
f MHz Low Ch 826.50 826.50 Mid Ch	on: Dipole S/N SG reading (dBm) 9.91 17.23	Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 9.29 16.61	EIRP (dBm) 11.44 18.76	ERP Limit (dBm) 38.45 38.45	(dBm) 40.60 40.60	(dB) -29.2 -21.8	Notes
f MHz Low Ch 826.50 826.50 Mid Ch 836.50	on: Dipole S/N SG reading (dBm) 9.91 17.23 9.72	Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6	Antenna Gain (dBd) 0.0 0.0 0.0	ERP (dBm) 9.29 16.61 9.10	EIRP (dBm) 11.44 18.76 11.25	ERP Limit (dBm) 38.45 38.45 38.45	(dBm) 40.60 40.60 40.60	(dB) -29.2 -21.8 -29.3	Notes
f MHz Low Ch 826.50 826.50 Mid Ch	on: Dipole S/N SG reading (dBm) 9.91 17.23	Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 9.29 16.61	EIRP (dBm) 11.44 18.76	ERP Limit (dBm) 38.45 38.45	(dBm) 40.60 40.60	(dB) -29.2 -21.8	Notes
f MHz Low Ch 826.50 826.50 Mid Ch 836.50	on: Dipole S/N SG reading (dBm) 9.91 17.23 9.72	Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6	Antenna Gain (dBd) 0.0 0.0 0.0	ERP (dBm) 9.29 16.61 9.10	EIRP (dBm) 11.44 18.76 11.25	ERP Limit (dBm) 38.45 38.45 38.45	(dBm) 40.60 40.60 40.60	(dB) -29.2 -21.8 -29.3	Notes
ubstituti f MHz Low Ch 826.50 826.50 826.50 Mid Ch 836.50 836.50	on: Dipole S/N SG reading (dBm) 9.91 17.23 9.72	Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6	Antenna Gain (dBd) 0.0 0.0 0.0	ERP (dBm) 9.29 16.61 9.10	EIRP (dBm) 11.44 18.76 11.25	ERP Limit (dBm) 38.45 38.45 38.45	(dBm) 40.60 40.60 40.60	(dB) -29.2 -21.8 -29.3	Notes

Page 794 of 929

16QAM EIRP POWER FOR LTE BAND 5 (5.0MHZ BANDWIDTH)

Company										
roject #:		15U21635								
)ate:		12/17/2015								
lest Engi		G. Chan								
Configura		EUT only								
lode:			6QAM 5MHz B	10/						
	i <u>pment:</u> g: Sunol T899,	and Chamb	er G Cable							
				le (s/n 245182-00	3; SUCOF	LEX 104P	EA)			
		I: 00022117,	4ft SMA Cab	le (s/n 245182-00 s Antenna Gain	B; SUCOF	LEX 104P		EIRP Limit	Margin	Notes
Substituti	ion: Dipole S/N	I: 00022117,	4ft SMA Cab					EIRP Limit (dBm)	Margin (dB)	Notes
f	ion: Dipole S/N SG reading	: 00022117, Ant. Pol. (H/V)	4ft SMA Cab	s Antenna Gain	ERP (dBm)	EIRP (dBm)	ERP Limit		(dB)	Notes
f MHz Low Ch 826.50	SG reading (dBm) 9.18	: 00022117, Ant. Pol. (H/V) V	4ft SMA Cab Cable Loss (dB) 0.6	s Antenna Gain (dBd) 0.0	ERP (dBm) 8.56	EIRP (dBm)	ERP Limit (dBm) 38.45	(dBm) 40.60	(dB) -29.9	Notes
f MHz Low Ch	ion: Dipole S/N SG reading (dBm)	: 00022117, Ant. Pol. (H/V)	4ft SMA Cab Cable Loss (dB)	s Antenna Gain (dBd)	ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	(dBm)	(dB)	Notes
f MHz Low Ch 826.50 826.50	SG reading (dBm) 9.18	: 00022117, Ant. Pol. (H/V) V	4ft SMA Cab Cable Loss (dB) 0.6	s Antenna Gain (dBd) 0.0	ERP (dBm) 8.56	EIRP (dBm)	ERP Limit (dBm) 38.45	(dBm) 40.60	(dB) -29.9	Notes
f MHz Low Ch 826.50	SG reading (dBm) 9.18	: 00022117, Ant. Pol. (H/V) V	4ft SMA Cab Cable Loss (dB) 0.6	s Antenna Gain (dBd) 0.0	ERP (dBm) 8.56	EIRP (dBm)	ERP Limit (dBm) 38.45	(dBm) 40.60	(dB) -29.9	Notes
f MHz Low Ch 826.50 826.50 Mid Ch	SG reading (dBm) 9.18 16.35	I: 00022117, Ant. Pol. (H/V) V H	4ft SMA Cab Cable Loss (dB) 0.6 0.6	s Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 8.56 15.73	EIRP (dBm) 10.71 17.88	ERP Limit (dBm) 38.45 38.45	(dBm) 40.60 40.60	(dB) -29.9 -22.7	Notes
f MHz Low Ch 826.50 826.50 Mid Ch 836.50 836.50	SG reading (dBm) 9.18 16.35 8.23	l: 00022117, Ant. Pol. (H/V) V H	4ft SMA Cab Cable Loss (dB) 0.6 0.6 0.6	s Antenna Gain (dBd) 0.0 0.0 0.0	ERP (dBm) 8.56 15.73 7.61	EIRP (dBm) 10.71 17.88 9.76	ERP Limit (dBm) 38.45 38.45 38.45	(dBm) 40.60 40.60 40.60	(dB) -29.9 -22.7 -30.8	Notes
f MHz Low Ch 826.50 826.50 Mid Ch 836.50	SG reading (dBm) 9.18 16.35 8.23	l: 00022117, Ant. Pol. (H/V) V H	4ft SMA Cab Cable Loss (dB) 0.6 0.6 0.6	s Antenna Gain (dBd) 0.0 0.0 0.0	ERP (dBm) 8.56 15.73 7.61	EIRP (dBm) 10.71 17.88 9.76	ERP Limit (dBm) 38.45 38.45 38.45	(dBm) 40.60 40.60 40.60	(dB) -29.9 -22.7 -30.8	Notes

Page 795 of 929

QPSK EIRP POWER FOR LTE BAND 5 (10.0MHZ BANDWIDTH)

ompany:										
oject #:		15U21635								
ate:		12/17/2015								
est Engi		G. Chan								
onfigura		EUT only								
ode:		LIE Dand 5 Q	PSK 10MHz BW	v						
	pment:	and Chambe	or G Cabla							
eceivino										
	j: Sunol T899, on: Dipole S/N			e (s/n 245182-003	3; SUCOF	LEX 104P	EA)			
		l: 00022117, 4	4ft SMA Cable	e (s/n 245182-003 Antenna Gain	B; SUCOF	LEX 104P		EIRP Limit	Margin	Notes
ubstituti f MHz	on: Dipole S/N	l: 00022117, 4	4ft SMA Cable					EIRP Limit (dBm)	Margin (dB)	Notes
f MHz Low Ch	on: Dipole S/N SG reading (dBm)	l: 00022117, 4 Ant. Pol. (H/V)	4ft SMA Cable Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	(dBm)	(dB)	Notes
f MHz 829.00	on: Dipole S/N SG reading (dBm) 9.70	l: 00022117, 4 Ant. Pol. (H/V) V	4ft SMA Cable Cable Loss (dB) 0.6	Antenna Gain (dBd)	ERP (dBm) 9.08	EIRP (dBm) 11.23	ERP Limit (dBm) 38.45	(dBm) 40.60	(dB) -29.4	Notes
f MHz Low Ch	on: Dipole S/N SG reading (dBm)	l: 00022117, 4 Ant. Pol. (H/V)	4ft SMA Cable Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	(dBm)	(dB)	Notes
f MHz Low Ch 829.00 829.00	on: Dipole S/N SG reading (dBm) 9.70	l: 00022117, 4 Ant. Pol. (H/V) V	4ft SMA Cable Cable Loss (dB) 0.6	Antenna Gain (dBd)	ERP (dBm) 9.08	EIRP (dBm) 11.23	ERP Limit (dBm) 38.45	(dBm) 40.60	(dB) -29.4	Notes
f MHz 829.00	on: Dipole S/N SG reading (dBm) 9.70	l: 00022117, 4 Ant. Pol. (H/V) V	4ft SMA Cable Cable Loss (dB) 0.6	Antenna Gain (dBd)	ERP (dBm) 9.08	EIRP (dBm) 11.23	ERP Limit (dBm) 38.45	(dBm) 40.60	(dB) -29.4	Notes
f MHz Low Ch 829.00 829.00 Mid Ch	on: Dipole S/N SG reading (dBm) 9.70 17.18	l: 00022117, 4 Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 9.08 16.56	EIRP (dBm) 11.23 18.71	ERP Limit (dBm) 38.45 38.45	(dBm) 40.60 40.60	(dB) -29.4 -21.9	Notes
Ibstituti f MHz Low Ch 829.00 829.00 829.00 Mid Ch 836.50 836.50	on: Dipole S/N SG reading (dBm) 9.70 17.18 9.77	l: 00022117, / Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 9.08 16.56 9.15	EIRP (dBm) 11.23 18.71 11.30	ERP Limit (dBm) 38.45 38.45 38.45	(dBm) 40.60 40.60 40.60	(dB) -29.4 -21.9 -29.3	Notes
f MHz Low Ch 829.00 829.00 829.00 Mid Ch 836.50	on: Dipole S/N SG reading (dBm) 9.70 17.18 9.77	l: 00022117, / Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 9.08 16.56 9.15	EIRP (dBm) 11.23 18.71 11.30	ERP Limit (dBm) 38.45 38.45 38.45	(dBm) 40.60 40.60 40.60	(dB) -29.4 -21.9 -29.3	Notes

Page 796 of 929

16QAM EIRP POWER FOR LTE BAND 5 (10.0MHZ BANDWIDTH)

Company	:									
Project #:		15U21635								
)ate:		12/17/2015								
lest Engi	neer:	G. Chan								
Configura		EUT only								
/lode:			6QAM 10MHz B	W						
			er G Cable							
Substituti	on: Dipole S/N	: 00022117,	4ft SMA Cabl	e (s/n 245182-00				FIRP Limit	Margin	Notes
Substituti	on: Dipole S/N	: 00022117, Ant. Pol.	4ft SMA Cabl	Antenna Gain	ERP	EIRP	ERP Limit	EIRP Limit	Margin (dB)	Notes
f MHz	on: Dipole S/N	: 00022117,	4ft SMA Cabl					EIRP Limit (dBm)	Margin (dB)	Notes
Substituti	on: Dipole S/N	: 00022117, Ant. Pol.	4ft SMA Cabl	Antenna Gain	ERP	EIRP	ERP Limit	1		Notes
f MHz Low Ch	on: Dipole S/N SG reading (dBm)	: 00022117, Ant. Pol. (H/V)	4ft SMA Cabl Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	(dBm)	(dB)	Notes
f MHz Low Ch 829.00 829.00	on: Dipole S/N SG reading (dBm) 9.10	: 00022117, Ant. Pol. (H/V) V	4ft SMA Cable Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm) 8.48	EIRP (dBm) 10.63	ERP Limit (dBm) 38.45	(dBm) 40.60	(dB) -30.0	Notes
f MHz Low Ch 829.00 829.00 Mid Ch	on: Dipole S/N SG reading (dBm) 9.10 16.70	: 00022117, Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 8.48 16.08	EIRP (dBm) 10.63 18.23	ERP Limit (dBm) 38.45 38.45	(dBm) 40.60 40.60	(dB) -30.0 -22.4	Notes
f MHz Low Ch 829.00 829.00 Mid Ch 836.50	on: Dipole S/N SG reading (dBm) 9.10 16.70 9.44	: 00022117, Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 8.48 16.08 8.82	EIRP (dBm) 10.63 18.23 10.97	ERP Limit (dBm) 38.45 38.45 38.45	(dBm) 40.60 40.60 40.60	(dB) -30.0 -22.4 -29.6	Notes
f MHz Low Ch 829.00 829.00 Mid Ch	on: Dipole S/N SG reading (dBm) 9.10 16.70	: 00022117, Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 8.48 16.08	EIRP (dBm) 10.63 18.23	ERP Limit (dBm) 38.45 38.45	(dBm) 40.60 40.60	(dB) -30.0 -22.4	Notes
f MHz Low Ch 829.00 829.00 Mid Ch 836.50	on: Dipole S/N SG reading (dBm) 9.10 16.70 9.44	: 00022117, Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 8.48 16.08 8.82	EIRP (dBm) 10.63 18.23 10.97	ERP Limit (dBm) 38.45 38.45 38.45	(dBm) 40.60 40.60 40.60	(dB) -30.0 -22.4 -29.6	Notes
f MHz Low Ch 829.00 829.00 Mid Ch 836.50 836.50	on: Dipole S/N SG reading (dBm) 9.10 16.70 9.44	: 00022117, Ant. Pol. (H/V) V H	4ft SMA Cable Cable Loss (dB) 0.6 0.6	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 8.48 16.08 8.82	EIRP (dBm) 10.63 18.23 10.97	ERP Limit (dBm) 38.45 38.45 38.45	(dBm) 40.60 40.60 40.60	(dB) -30.0 -22.4 -29.6	Notes

Page 797 of 929

9.2.4. LTE BAND 7

QPSK EIRP POWER FOR LTE BAND 7 (5.0MHZ BANDWIDTH)

Company:								
Project #:		15U21635						
Date:		12/21/2015						
lest Engi	neer:	G. Chan						
Configura	tion:	EUT only						
Node:		LTE Band 7 QP	SK 5MHz BW					
Substituti	on: Horn T59 S	ubstitution 4	4ft SMA Cable (s	/n 245182-003: SUC	OFLEX 104PE	A)		
Substituti	on: Horn T59 S	ubstitution, 4	4ft SMA Cable (s	/n 245182-003; SUC	OFLEX 104PE	A)		
Substituti f	on: Horn T59 S	Ant. Pol.	4ft SMA Cable (s	/n 245182-003; SUC Antenna Gain	EIRP	A)	Margin EIRP	Notes
				· · · · · ·			Margin EIRP (dB)	Notes
f GHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 2.503	SG reading (dBm) 14.0	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 9.34	EIRP (dBm) 22.16	Limit (dBm) 33.0	(dB) -10.8	Notes
f GHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 2.503 2.503	SG reading (dBm) 14.0	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 9.34	EIRP (dBm) 22.16	Limit (dBm) 33.0	(dB) -10.8	Notes
f GHz 2.503 2.503 Mid Ch	SG reading (dBm) 14.0 15.9	Ant. Pol. (H/V)	Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.34	EIRP (dBm) 22.16 24.13	Limit (dBm) 33.0 33.0	(dB) -10.8	Notes
f GHz Low Ch 2.503 2.503	SG reading (dBm) 14.0	Ant. Pol. (H/V) V H	Cable Loss (dB)	Antenna Gain (dBi) 9.34 9.34	EIRP (dBm) 22.16	Limit (dBm) 33.0	(dB) -10.8 -8.9	Notes
f GHz 2.503 2.503 Mid Ch 2.535 2.535	SG reading (dBm) 14.0 15.9 14.6	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.34 9.34 9.34	EIRP (dBm) 22.16 24.13 22.85	Limit (dBm) 33.0 33.0 33.0	(dB) -10.8 -8.9 -10.1	Notes
f GHz 2.503 2.503 Mid Ch 2.535 2.535 High Ch	SG reading (dBm) 14.0 15.9 14.6 16.2	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.16 1.16	Antenna Gain (dBi) 9.34 9.34 9.34 9.38 9.38	EIRP (dBm) 22.16 24.13 22.85 24.45	Limit (dBm) 33.0 33.0 33.0 33.0	(dB) -10.8 -8.9 -10.1 -8.5	Notes
f GHz 2.503 2.503 Mid Ch 2.535 2.535	SG reading (dBm) 14.0 15.9 14.6	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.34 9.34 9.34	EIRP (dBm) 22.16 24.13 22.85	Limit (dBm) 33.0 33.0 33.0	(dB) -10.8 -8.9 -10.1	Notes

Page 798 of 929

16QAM EIRP POWER FOR LTE BAND 7 (5.0MHZ BANDWIDTH)

Company:								
Project #:		15U21635						
Date:		12/21/2015						
Test Engi		G. Chan						
Configura		EUT only						
Mode:			DAM 5MHz BW					
			4ft SMA Cable (s					
f GHz	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	Margin EIRP (dB)	Notes
f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	_	Notes
f GHz	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	_	Notes
f GHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 2.503 2.503	SG reading (dBm) 13.3	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 9.34	EIRP (dBm) 21.50	Limit (dBm) 33.0	(dB) -11.5	Notes
f GHz 2.503 2.503 Mid Ch	SG reading (dBm) 13.3 14.8	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.34 9.34	EIRP (dBm) 21.50 22.96	Limit (dBm) 33.0 33.0	(dB) -11.5 -10.0	Notes
f GHz Low Ch 2.503 2.503 Mid Ch 2.535	SG reading (dBm) 13.3 14.8 13.8	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.34 9.34 9.34	EIRP (dBm) 21.50 22.96 22.04	Limit (dBm) 33.0 33.0 33.0	(dB) -11.5 -10.0 -11.0	Notes
f GHz Low Ch 2.503 2.503 Mid Ch	SG reading (dBm) 13.3 14.8	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.34 9.34	EIRP (dBm) 21.50 22.96	Limit (dBm) 33.0 33.0	(dB) -11.5 -10.0	Notes
f GHz Low Ch 2.503 2.503 Mid Ch 2.535	SG reading (dBm) 13.3 14.8 13.8 14.9	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.16 1.16	Antenna Gain (dBi) 9.34 9.34 9.34 9.38 9.38	EIRP (dBm) 21.50 22.96 22.04 23.12	Limit (dBm) 33.0 33.0 33.0 33.0	(dB) -11.5 -10.0 -11.0 -9.9	Notes
f GHz 2.503 2.503 Mid Ch 2.535 2.535	SG reading (dBm) 13.3 14.8 13.8	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.34 9.34 9.34	EIRP (dBm) 21.50 22.96 22.04	Limit (dBm) 33.0 33.0 33.0	(dB) -11.5 -10.0 -11.0	Notes

Page 799 of 929

QPSK EIRP POWER FOR LTE BAND 7 (10.0MHZ BANDWIDTH)

PSK 10MHz BW					
			-		
Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	Margin EIRP (dB)	Notes
				_	Notes
				_	Notes
(dB)	(dBi)	(dBm)	(dBm)	(dB)	Notes
(dB)	(dBi) 9.34	(dBm) 22.24	(dBm) 33.0	(dB) -10.8	Notes
(dB)	(dBi) 9.34 9.34	(dBm) 22.24 24.16	(dBm) 33.0 33.0	(dB) -10.8 -8.8	Notes
(dB)	(dBi) 9.34	(dBm) 22.24	(dBm) 33.0	(dB) -10.8	Notes
(dB) 1.15 1.15 1.15	(dBi) 9.34 9.34 9.34 9.38	(dBm) 22.24 24.16 22.84	(dBm) 33.0 33.0 33.0	(dB) -10.8 -8.8 -10.2	Notes
(dB) 1.15 1.15 1.15	(dBi) 9.34 9.34 9.34 9.38	(dBm) 22.24 24.16 22.84	(dBm) 33.0 33.0 33.0	(dB) -10.8 -8.8 -10.2	Notes
	PSK 10MHz BW G SMA Cables 4ft SMA Cable (s/	G SMA Cables	G SMA Cables		G SMA Cables

Page 800 of 929

16QAM EIRP POWER FOR LTE BAND 7 (10.0MHZ BANDWIDTH)

		mont Radiated	tion Measurement I Chamber G				
1	15U21635						
1	12/21/2015						
r: (G. Chan						
	EUT only						
		QAM 10MHz BW					
		and a serie (a			,		
G reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	Margin EIRP (dB)	Notes
							Notes
							Notes
(dBm)	(H/V)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	Notes
(dBm) 13.0	(H/V) V	(dB)	(dBi) 9.34	(dBm) 21.18	(dBm) 33.0	(dB) -11.8	Notes
(dBm) 13.0	(H/V) V	(dB)	(dBi) 9.34	(dBm) 21.18	(dBm) 33.0	(dB) -11.8	Notes
(dBm) 13.0 15.2	(H/V) V H	(dB) 1.15 1.15	(dBi) 9.34 9.34	(dBm) 21.18 23.42	(dBm) 33.0 33.0	(dB) -11.8 -9.6	Notes
(dBm) 13.0 15.2 13.9	(H/V) V H	(dB)	(dBi) 9.34 9.34 9.38	(dBm) 21.18 23.42 22.10	(dBm) 33.0 33.0 33.0 33.0	(dB) -11.8 -9.6 -10.9	Notes
(dBm) 13.0 15.2 13.9	(H/V) V H	(dB)	(dBi) 9.34 9.34 9.38	(dBm) 21.18 23.42 22.10	(dBm) 33.0 33.0 33.0 33.0	(dB) -11.8 -9.6 -10.9	Notes
	r: (: 	r: G. Chan : EUT only LTE Band 7 160 nt: orn T862, and Chamber	r: G. Chan : EUT only LTE Band 7 16QAM 10MHz BW nt: orn T862, and Chamber G SMA Cables	r: G. Chan : EUT only LTE Band 7 16QAM 10MHz BW nt: orn T862, and Chamber G SMA Cables	r: G. Chan : EUT only LTE Band 7 16QAM 10MHz BW nt: orn T862, and Chamber G SMA Cables	r: G. Chan : EUT only LTE Band 7 16QAM 10MHz BW nt:	r: G. Chan : EUT only LTE Band 7 16QAM 10MHz BW nt: orn T862, and Chamber G SMA Cables

Page 801 of 929

QPSK EIRP POWER FOR LTE BAND 7 (15.0MHZ BANDWIDTH)

			emont Radiated	tion Measurement I Chamber G				
Company:								
Project #:		15U21635						
Date:		12/21/2015						
Test Engi	neer:	G. Chan						
Configura		EUT only						
Mode:			SK 15MHz BW					
ubetituti	on: Horn T59 S	ubstitution /	1ft SMA Cable (e	In 245182-003: SLIC		Δ)		
Substitutio f GHz	SG reading	Ant. Pol.	Cable Loss	/n 245182-003; SUC Antenna Gain (dBi)	EIRP	Limit	Margin EIRP (dB)	Notes
f						-	Margin EIRP (dB)	Notes
f GHz	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit		Notes
f GHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 2.508 2.508	SG reading (dBm) 14.6	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 9.34	EIRP (dBm) 22.81	Limit (dBm) 33.0	(dB) -10.2	Notes
f GHz 2.508 2.508 Mid Ch	SG reading (dBm) 14.6 15.6	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.34 9.34	EIRP (dBm) 22.81 23.83	Limit (dBm) 33.0 33.0	(dB) -10.2 -9.2	Notes
f GHz Low Ch 2.508 2.508 Mid Ch 2.535	SG reading (dBm) 14.6 15.6 15.6	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.16	Antenna Gain (dBi) 9.34 9.34 9.38	EIRP (dBm) 22.81 23.83 23.79	Limit (dBm) 33.0 33.0 33.0	(dB) -10.2 -9.2 -9.2	Notes
f GHz 2.508 2.508 Mid Ch	SG reading (dBm) 14.6 15.6	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.34 9.34	EIRP (dBm) 22.81 23.83	Limit (dBm) 33.0 33.0	(dB) -10.2 -9.2	Notes
f GHz Low Ch 2.508 2.508 Mid Ch 2.535	SG reading (dBm) 14.6 15.6 15.6	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.16	Antenna Gain (dBi) 9.34 9.34 9.38	EIRP (dBm) 22.81 23.83 23.79	Limit (dBm) 33.0 33.0 33.0	(dB) -10.2 -9.2 -9.2	Notes
f GHz Low Ch 2.508 2.508 Mid Ch 2.535 2.535	SG reading (dBm) 14.6 15.6 15.6	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.16	Antenna Gain (dBi) 9.34 9.34 9.38	EIRP (dBm) 22.81 23.83 23.79	Limit (dBm) 33.0 33.0 33.0	(dB) -10.2 -9.2 -9.2	Notes

Page 802 of 929

16QAM EIRP POWER FOR LTE BAND 7 (15.0MHZ BANDWIDTH)

Company:								
Project #:		15U21635						
Date:		12/21/2015						
Test Engi		G. Chan						
Configura		EUT only						
Node:			QAM 15MHz BW					
UDSTITUTI	on: Horn T59 S	ubstitution 4	4ft SMA Cable (s	/n 245182-003 SUC	OFLEX 104PE	A)		
f	SG reading	Ant. Pol.	Cable Loss	/n 245182-003; SUC Antenna Gain (dBi)	EIRP	Limit	Margin EIRP (dB)	Notes
f GHz							Margin EIRP (dB)	Notes
f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	-	Notes
f GHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 2.508 2.508	SG reading (dBm) 13.7	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 9.34	EIRP (dBm) 21.91	Limit (dBm) 33.0	(dB) -11.1	Notes
f GHz 2.508 2.508 Mid Ch	SG reading (dBm) 13.7 14.6	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.34 9.34	EIRP (dBm) 21.91 22.76	Limit (dBm) 33.0 33.0	(dB) -11.1 -10.2	Notes
f GHz Low Ch 2.508 2.508 Mid Ch 2.535	SG reading (dBm) 13.7 14.6 14.8	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.34 9.34 9.38	EIRP (dBm) 21.91 22.76 23.00	Limit (dBm) 33.0 33.0 33.0	(dB) -11.1 -10.2 -10.0	Notes
f GHz 2.508 2.508 Mid Ch	SG reading (dBm) 13.7 14.6	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.34 9.34	EIRP (dBm) 21.91 22.76	Limit (dBm) 33.0 33.0	(dB) -11.1 -10.2	Notes
f GHz Low Ch 2.508 2.508 Mid Ch 2.535	SG reading (dBm) 13.7 14.6 14.8	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.34 9.34 9.38	EIRP (dBm) 21.91 22.76 23.00	Limit (dBm) 33.0 33.0 33.0	(dB) -11.1 -10.2 -10.0	Notes
f GHz 2.508 2.508 Mid Ch 2.535 2.535	SG reading (dBm) 13.7 14.6 14.8	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.34 9.34 9.38	EIRP (dBm) 21.91 22.76 23.00	Limit (dBm) 33.0 33.0 33.0	(dB) -11.1 -10.2 -10.0	Notes

Page 803 of 929

QPSK EIRP POWER FOR LTE BAND 7 (20.0MHZ BANDWIDTH)

company:								
Project #:		15U21635						
)ate:		12/21/2015						
lest Engi		G. Chan						
Configura		EUT only						
/lode:		-	PSK 20MHz BW					
f GHz	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	Margin EIRP (dB)	Notes
f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	_	Notes
f GHz	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	_	Notes
f GHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 2.510 2.510	SG reading (dBm) 15.0	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 9.35	EIRP (dBm) 23.23	Limit (dBm) 33.0	(dB) -9.8	Notes
f GHz 2.510 2.510 Mid Ch	SG reading (dBm) 15.0 16.5	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.35 9.35	EIRP (dBm) 23.23 24.73	Limit (dBm) 33.0 33.0	(dB) -9.8 -8.3	Notes
f GHz Low Ch 2.510 2.510 Mid Ch 2.535	SG reading (dBm) 15.0 16.5 16.1	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.35 9.35 9.38	EIRP (dBm) 23.23 24.73 24.31	Limit (dBm) 33.0 33.0 33.0	(dB) -9.8 -8.3 -8.3 -8.7	Notes
f GHz 2.510 2.510 Mid Ch	SG reading (dBm) 15.0 16.5	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.35 9.35	EIRP (dBm) 23.23 24.73	Limit (dBm) 33.0 33.0	(dB) -9.8 -8.3	Notes
f GHz Low Ch 2.510 2.510 Mid Ch 2.535 2.535 High Ch	SG reading (dBm) 15.0 16.5 16.1 16.5	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.16 1.16	Antenna Gain (dBi) 9.35 9.35 9.35 9.38 9.38	EIRP (dBm) 23.23 24.73 24.73 24.31 24.75	Limit (dBm) 33.0 33.0 33.0 33.0	(dB) -9.8 -8.3 -8.7 -8.7 -8.2	Notes
f GHz Low Ch 2.510 2.510 Mid Ch 2.535 2.535	SG reading (dBm) 15.0 16.5 16.1	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.35 9.35 9.38	EIRP (dBm) 23.23 24.73 24.31	Limit (dBm) 33.0 33.0 33.0	(dB) -9.8 -8.3 -8.3 -8.7	Notes

Page 804 of 929

16QAM EIRP POWER FOR LTE BAND 7 (20.0MHZ BANDWIDTH)

Company:								
Project #:		15U21635						
Date:		12/21/2015						
rest Engi		G. Chan						
Configura		EUT only						
Johngura Aode:		-	DAM 20MHz BW					
-			G SMA Cables	/n 245182-003; SUC		Δ)		
f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
							Margin EIRP (dB)	Notes
f GHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 2.510	SG reading (dBm) 14.2	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 9.35	EIRP (dBm) 22.41	Limit (dBm) 33.0	(dB) -10.6	Notes
f GHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 2.510 2.510	SG reading (dBm) 14.2	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 9.35	EIRP (dBm) 22.41	Limit (dBm) 33.0	(dB) -10.6	Notes
f GHz Low Ch 2.510	SG reading (dBm) 14.2	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 9.35	EIRP (dBm) 22.41	Limit (dBm) 33.0	(dB) -10.6	Notes
f GHz Low Ch 2.510 2.510 Mid Ch	SG reading (dBm) 14.2 15.5	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.35 9.35	EIRP (dBm) 22.41 23.72	Limit (dBm) 33.0 33.0	(dB) -10.6 -9.3	Notes
f GHz Low Ch 2.510 2.510 Mid Ch 2.535 2.535	SG reading (dBm) 14.2 15.5 15.3	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.35 9.35 9.35	EIRP (dBm) 22.41 23.72 23.47	Limit (dBm) 33.0 33.0 33.0	(dB) -10.6 -9.3 -9.3	Notes
f GHz 2.510 2.510 Mid Ch 2.535 2.535 High Ch	SG reading (dBm) 14.2 15.5 15.3 15.5	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.16 1.16	Antenna Gain (dBi) 9.35 9.35 9.35 9.38 9.38	EIRP (dBm) 22.41 23.72 23.47 23.75	Limit (dBm) 33.0 33.0 33.0 33.0	(dB) -10.6 -9.3 -9.5 -9.5 -9.2	Notes
f GHz Low Ch 2.510 2.510 Mid Ch 2.535 2.535	SG reading (dBm) 14.2 15.5 15.3	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.35 9.35 9.35	EIRP (dBm) 22.41 23.72 23.47	Limit (dBm) 33.0 33.0 33.0	(dB) -10.6 -9.3 -9.3	Notes

Page 805 of 929

9.2.5. LTE BAND 12

QPSK EIRP POWER FOR LTE BAND 12 (1.4MHZ BANDWIDTH)

Company:	:									
Project #:		15U21635								
Date:		12/16/2015								
Test Engi	ineer:	G. Chan								
Configura	ation:	EUT only								
Node:		LTE Band 12 C	PSK 1.4MHz E	BW						
	g: Sunol T899,			e (s/n 245182-00	3: SUCOF	LEX 104F	PEA)			
				- (.,		,			
	SG reading	Ant Dol	Cable Loss	Antonna Gain	EDD	EIDD	EDD L imit	EIDD Limit	Margin	Notos
f MH 7	SG reading	Ant. Pol.		Antenna Gain (dBd)	ERP (dBm)	EIRP (dBm)		EIRP Limit	Margin (dB)	Notes
MHz	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	EIRP Limit (dBm)	Margin (dB)	Notes
MHz Low Ch	(dBm)		(dB)	(dBd)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	Notes
MHz	-	(H/V)								Notes
MHz ow Ch 699.70 699.70	(dBm) 6.58	(H/V) V	(dB) 0.55	(dBd) 0.0	(dBm) 6.03	(dBm) 8.18	(dBm) 34.77	(dBm) 36.99	(dB) -28.8	Notes
MHz -ow Ch 699.70 699.70 Mid Ch	(dBm) 6.58 15.79	(H/V) V H	(dB) 0.55 0.55	(dBd) 0.0 0.0	(dBm) 6.03 15.24	(dBm) 8.18 17.39	(dBm) 34.77 34.77	(dBm) 36.99 36.99	(dB) -28.8 -19.6	Notes
MHz ow Ch 699.70 699.70 Mid Ch 707.50	(dBm) 6.58 15.79 6.92	(H/V) V H	(dB) 0.55 0.55 0.55	(dBd) 0.0 0.0 0.0	(dBm) 6.03 15.24 6.37	(dBm) 8.18 17.39 8.52	(dBm) 34.77 34.77 34.77	(dBm) 36.99 36.99 36.99	(dB) -28.8 -19.6 -28.5	Notes
MHz -ow Ch 699.70 699.70 Mid Ch	(dBm) 6.58 15.79	(H/V) V H	(dB) 0.55 0.55	(dBd) 0.0 0.0	(dBm) 6.03 15.24	(dBm) 8.18 17.39	(dBm) 34.77 34.77	(dBm) 36.99 36.99	(dB) -28.8 -19.6	Notes
MHz ow Ch 699.70 699.70 Mid Ch 707.50 707.50	(dBm) 6.58 15.79 6.92	(H/V) V H	(dB) 0.55 0.55 0.55	(dBd) 0.0 0.0 0.0	(dBm) 6.03 15.24 6.37	(dBm) 8.18 17.39 8.52	(dBm) 34.77 34.77 34.77	(dBm) 36.99 36.99 36.99	(dB) -28.8 -19.6 -28.5	Notes
MHz -ow Ch 699.70 699.70 Mid Ch 707.50	(dBm) 6.58 15.79 6.92	(H/V) V H	(dB) 0.55 0.55 0.55	(dBd) 0.0 0.0 0.0	(dBm) 6.03 15.24 6.37	(dBm) 8.18 17.39 8.52	(dBm) 34.77 34.77 34.77	(dBm) 36.99 36.99 36.99	(dB) -28.8 -19.6 -28.5	Notes

Page 806 of 929

16QAM EIRP POWER FOR LTE BAND 12 (1.4MHZ BANDWIDTH)

•										
Company										
Project #		15U21635								
Date:		12/16/2015								
Test Eng		G. Chan								
Configura		EUT only								
/lode:		LTE Band 12 1	16QAM 1.4MHz	BW						
f	SG reading	Ant. Pol.		Antenna Gain	ERP	EIRP	1	EIRP Limit	Margin	Notes
MHz	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	EIRP Limit (dBm)	Margin (dB)	Notes
MHz Low Ch	(dBm)	(H/V)	(dB)	(dBd)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	Notes
MHz _ow Ch 699.70	(dBm)	(H/V) V	(dB) 0.55	(dBd) 0.0	(dBm) 4.85	(dBm) 7.00	(dBm) 34.77	(dBm) 36.99	(dB) -30.0	Notes
MHz Low Ch	(dBm)	(H/V)	(dB)	(dBd)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	Notes
MHz _ow Ch 699.70 699.70	(dBm)	(H/V) V	(dB) 0.55	(dBd) 0.0	(dBm) 4.85	(dBm) 7.00	(dBm) 34.77	(dBm) 36.99	(dB) -30.0	Notes
MHz _ow Ch 699.70	(dBm)	(H/V) V	(dB) 0.55	(dBd) 0.0	(dBm) 4.85	(dBm) 7.00	(dBm) 34.77	(dBm) 36.99	(dB) -30.0	Notes
MHz Low Ch 699.70 699.70 Mid Ch	(dBm) 5.40 14.99	(H/V) V H	(dB) 0.55 0.55	(dBd) 0.0 0.0	(dBm) 4.85 14.44	(dBm) 7.00 16.59	(dBm) 34.77 34.77	(dBm) 36.99 36.99	(dB) -30.0 -20.4	Notes
MHz ow Ch 699.70 699.70 Mid Ch 707.50 707.50	(dBm) 5.40 14.99 5.94	(H/V) V H	(dB) 0.55 0.55 0.55	(dBd) 0.0 0.0 0.0	(dBm) 4.85 14.44 5.39	(dBm) 7.00 16.59 7.54	(dBm) 34.77 34.77 34.77	(dBm) 36.99 36.99 36.99	(dB) -30.0 -20.4 -29.5	Notes
MHz ow Ch 699.70 699.70 Mid Ch 707.50	(dBm) 5.40 14.99 5.94	(H/V) V H	(dB) 0.55 0.55 0.55	(dBd) 0.0 0.0 0.0	(dBm) 4.85 14.44 5.39	(dBm) 7.00 16.59 7.54	(dBm) 34.77 34.77 34.77	(dBm) 36.99 36.99 36.99	(dB) -30.0 -20.4 -29.5	Notes

Page 807 of 929

QPSK EIRP POWER FOR LTE BAND 12 (3.0MHZ BANDWIDTH)

Company	:									
Project #:		15U21635								
Date:		12/16/2015								
Test Engi	ineer:	G. Chan								
Configura		EUT only								
Mode:			QPSK 3MHz BV	v						
	g: Sunol T899, ion: Dipole S/N SG reading		4ft SMA Cable	e (s/n 245182-003 Antenna Gain	B; SUCOF	LEX 104P	EA)	EIRP Limit	Margin	Notes
MHz	(dBm)	(H/V)	(dB)	(dBd)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	
	-		(dB)	(dBd)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	
MHz Low Ch 700.50	(dBm) 6.62	(H/V) V	0.55	0.0	6.07	8.22	34.77	36.99	-28.8	
MHz Low Ch	(dBm)	(H/V)								
MHz Low Ch 700.50 700.50	(dBm) 6.62	(H/V) V	0.55	0.0	6.07	8.22	34.77	36.99	-28.8	
MHz Low Ch 700.50 700.50 Mid Ch	(dBm) 6.62 15.93	(H/V) V H	0.55	0.0	6.07 15.38	8.22 17.53	34.77 34.77	36.99 36.99	-28.8 -19.5	
MHz Low Ch 700.50 700.50 Mid Ch 707.50	(dBm) 6.62	(H/V) V	0.55	0.0	6.07	8.22 17.53 8.58	34.77 34.77 34.77	36.99	-28.8	
MHz Low Ch 700.50 700.50 Mid Ch 707.50 707.50	(dBm) 6.62 15.93 6.98	(H/V) V H	0.55 0.55 0.55	0.0 0.0 0.0	6.07 15.38 6.43	8.22 17.53	34.77 34.77	36.99 36.99 36.99	-28.8 -19.5 -28.4	
MHz Low Ch 700.50 700.50 Mid Ch 707.50	(dBm) 6.62 15.93 6.98	(H/V) V H	0.55 0.55 0.55	0.0 0.0 0.0	6.07 15.38 6.43	8.22 17.53 8.58	34.77 34.77 34.77	36.99 36.99 36.99	-28.8 -19.5 -28.4	

Page 808 of 929

16QAM EIRP POWER FOR LTE BAND 12 (3.0MHZ BANDWIDTH)

Company	r:									
Project #		15U21635								
Date:		12/16/2015								
Test Eng		G. Chan								
Configura		EUT only								
Mode:			16QAM 3MHz B	w						
	g: Sunol T899, ion: Dipole S/N			e (s/n 245182-00	3; SUCOF	LEX 104P	PEA)			
f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	ERP	EIRP	ERP Limit	EIRP Limit	Margin	Notes
f MHz	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	EIRP Limit (dBm)	Margin (dB)	Notes
	-					(dBm)	(dBm)	(dBm)	(dB)	Notes
MHz Low Ch 700.50	(dBm)	(H/V) V	(dB) 0.55	(dBd) 0.0	(dBm) 4.88	(dBm) 7.03	(dBm) 34.77	(dBm) 36.99	(dB) -30.0	Notes
MHz Low Ch	(dBm)	(H/V)	(dB)	(dBd)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	Notes
MHz Low Ch 700.50 700.50	(dBm)	(H/V) V	(dB) 0.55	(dBd) 0.0	(dBm) 4.88	(dBm) 7.03	(dBm) 34.77	(dBm) 36.99	(dB) -30.0	Notes
MHz Low Ch 700.50 700.50 Mid Ch	(dBm) 5.43 14.86	(H/V) V H	(dB) 0.55 0.55	(dBd) 0.0 0.0	(dBm) 4.88 14.31	(dBm) 7.03 16.46	(dBm) 34.77 34.77	(dBm) 36.99 36.99	(dB) -30.0 -20.5	Notes
MHz Low Ch 700.50 700.50	(dBm)	(H/V) V	(dB) 0.55	(dBd) 0.0	(dBm) 4.88	(dBm) 7.03	(dBm) 34.77	(dBm) 36.99	(dB) -30.0	Notes
MHz Low Ch 700.50 700.50 Mid Ch 707.50 707.50	(dBm) 5.43 14.86 6.18	(H/V) V H	(dB) 0.55 0.55 0.55	(dBd) 0.0 0.0 0.0	(dBm) 4.88 14.31 5.63	(dBm) 7.03 16.46 7.78	(dBm) 34.77 34.77 34.77	(dBm) 36.99 36.99 36.99	(dB) -30.0 -20.5 -29.2	Notes
MHz Low Ch 700.50 700.50 Mid Ch 707.50	(dBm) 5.43 14.86 6.18	(H/V) V H	(dB) 0.55 0.55 0.55	(dBd) 0.0 0.0 0.0	(dBm) 4.88 14.31 5.63	(dBm) 7.03 16.46 7.78	(dBm) 34.77 34.77 34.77	(dBm) 36.99 36.99 36.99	(dB) -30.0 -20.5 -29.2	Notes

Page 809 of 929

QPSK EIRP POWER FOR LTE BAND 12 (5.0MHZ BANDWIDTH)

Company										
Project #:		15U21635								
Date:		12/16/2015								
Test Engi		G. Chan								
Configura	ation:	EUT only								
Mode:		LTE Band 12 C	QPSK 5MHz BV	/						
Test Equi	ipment:									
	g: Sunol T899,	and Chambe	er G Cable							
Substituti	ion: Dipole S/N	I: 00022117, 4	4ft SMA Cable	e (s/n 245182-00	3; SUCOF	LEX 104F	PEA)			
f	SG reading	Ant. Pol.		Antenna Gain	ERP	EIRP		EIRP Limit	Margin	Notes
MHz	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	EIRP Limit (dBm)	Margin (dB)	Notes
MHz Low Ch	(dBm)	(H/V)	(dB)	(dBd)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	Notes
MHz Low Ch 701.50	(dBm) 6.57	(H/V) V	(dB) 0.55	(dBd) 0.0	(dBm) 6.02	(dBm) 8.17	(dBm) 34.77	(dBm) 36.99	(dB) -28.8	Notes
MHz Low Ch	(dBm)	(H/V)	(dB)	(dBd)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	Notes
MHz Low Ch 701.50 701.50	(dBm) 6.57	(H/V) V	(dB) 0.55	(dBd) 0.0	(dBm) 6.02	(dBm) 8.17	(dBm) 34.77	(dBm) 36.99	(dB) -28.8	Notes
MHz Low Ch 701.50 701.50 Mid Ch	(dBm) 6.57 15.82	(H/V) V H	(dB) 0.55 0.55	(dBd) 0.0 0.0	(dBm) 6.02 15.27	(dBm) 8.17 17.42	(dBm) 34.77 34.77	(dBm) 36.99 36.99	(dB) -28.8 -19.6	Notes
MHz Low Ch 701.50	(dBm) 6.57	(H/V) V	(dB) 0.55	(dBd) 0.0	(dBm) 6.02	(dBm) 8.17	(dBm) 34.77	(dBm) 36.99	(dB) -28.8	Notes
MHz Low Ch 701.50 701.50 Mid Ch 707.50	(dBm) 6.57 15.82 6.70	(H/V) V H	(dB) 0.55 0.55 0.55	(dBd) 0.0 0.0 0.0	(dBm) 6.02 15.27 6.15	(dBm) 8.17 17.42 8.30	(dBm) 34.77 34.77 34.77	(dBm) 36.99 36.99 36.99	(dB) -28.8 -19.6 -28.7	Notes
MHz Low Ch 701.50 701.50 Mid Ch 707.50 707.50 High Ch	(dBm) 6.57 15.82 6.70 16.32	(H/V) V H V H	(dB) 0.55 0.55 0.55 0.55	(dBd) 0.0 0.0 0.0 0.0	(dBm) 6.02 15.27 6.15 15.77	(dBm) 8.17 17.42 8.30 17.92	(dBm) 34.77 34.77 34.77 34.77	(dBm) 36.99 36.99 36.99 36.99 36.99	(dB) -28.8 -19.6 -28.7 -28.7 -19.1	Notes
MHz Low Ch 701.50 701.50 Mid Ch 707.50	(dBm) 6.57 15.82 6.70	(H/V) V H	(dB) 0.55 0.55 0.55	(dBd) 0.0 0.0 0.0	(dBm) 6.02 15.27 6.15	(dBm) 8.17 17.42 8.30	(dBm) 34.77 34.77 34.77	(dBm) 36.99 36.99 36.99	(dB) -28.8 -19.6 -28.7	Notes

Page 810 of 929

16QAM EIRP POWER FOR LTE BAND 12 (5.0MHZ BANDWIDTH)

Company										
Project #:		15U21635								
Date:		12/16/2015								
Test Engi		G. Chan								
Configura		EUT only								
Mode:			16QAM 5MHz B	w/						
<u>Fest Equi</u> Receiving	<u>pment:</u> g: Sunol T899,	and Chambe	er G Cable							
Substituti	on: Dipole S/N	l: 00022117,	4ft SMA Cable	e (s/n 245182-00	3; SUCOF	LEX 104F	PEA)			
	20 I'	A	0.11.1			5100	COD Limit			Neter
f	SG reading	Ant. Pol.	1	Antenna Gain	ERP	EIRP	1		Margin	Notes
MHz	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	EIRP Limit (dBm)	Margin (dB)	Notes
MHz Low Ch	(dBm)	(H/V)	(dB)	(dBd)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	Notes
MHz Low Ch 701.50	(dBm) 5.52	(H/V) V	(dB) 0.55	(dBd) 0.0	(dBm) 4.97	(dBm) 7.12	(dBm) 34.77	(dBm) 36.99	(dB) -29.9	Notes
MHz Low Ch	(dBm)	(H/V)	(dB)	(dBd)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	Notes
MHz _ow Ch 701.50 701.50	(dBm) 5.52	(H/V) V	(dB) 0.55	(dBd) 0.0	(dBm) 4.97	(dBm) 7.12	(dBm) 34.77	(dBm) 36.99	(dB) -29.9	Notes
MHz Low Ch 701.50	(dBm) 5.52	(H/V) V	(dB) 0.55	(dBd) 0.0	(dBm) 4.97	(dBm) 7.12	(dBm) 34.77	(dBm) 36.99	(dB) -29.9	Notes
MHz Low Ch 701.50 701.50 Mid Ch	(dBm) 5.52 14.82	(H/V) V H	(dB) 0.55 0.55	(dBd) 0.0 0.0	(dBm) 4.97 14.27	(dBm) 7.12 16.42	(dBm) 34.77 34.77	(dBm) 36.99 36.99	(dB) -29.9 -20.6	Notes
MHz Low Ch 701.50 701.50 Mid Ch 707.50 707.50	(dBm) 5.52 14.82 5.63	(H/V) V H	(dB) 0.55 0.55 0.55	(dBd) 0.0 0.0 0.0	(dBm) 4.97 14.27 5.08	(dBm) 7.12 16.42 7.23	(dBm) 34.77 34.77 34.77	(dBm) 36.99 36.99 36.99	(dB) -29.9 -20.6 -29.8	Notes
MHz Low Ch 701.50 701.50 Mid Ch 707.50	(dBm) 5.52 14.82 5.63	(H/V) V H	(dB) 0.55 0.55 0.55	(dBd) 0.0 0.0 0.0	(dBm) 4.97 14.27 5.08	(dBm) 7.12 16.42 7.23	(dBm) 34.77 34.77 34.77	(dBm) 36.99 36.99 36.99	(dB) -29.9 -20.6 -29.8	Notes

Page 811 of 929

QPSK EIRP POWER FOR LTE BAND 12 (10.0MHZ BANDWIDTH)

Company	:									
Project #:		15U21635								
Date:		12/16/2015								
Test Engi	neer:	G. Chan								
Configura	ation:	EUT only								
Mode:		LTE Band 12	QPSK 10MHz B	W						
f	SG reading	I: 00022117, Ant. Pol.		e (s/n 245182-00 Antenna Gain	B; SUCOF	LEX 104P		EIRP Limit	Margin	Notes
					·			EIRP Limit (dBm)	Margin (dB)	Notes
f MHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	(dBm)	(dB)	Notes
f MHz Low Ch 704.00	SG reading (dBm) 6.63	Ant. Pol. (H/V) V	Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm) 6.08	EIRP (dBm) 8.23	ERP Limit (dBm) 34.77	(dBm) 36.99	(dB) -28.8	Notes
f MHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	(dBm)	(dB)	Notes
f MHz Low Ch 704.00 704.00	SG reading (dBm) 6.63	Ant. Pol. (H/V) V	Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm) 6.08	EIRP (dBm) 8.23	ERP Limit (dBm) 34.77	(dBm) 36.99	(dB) -28.8	Notes
f MHz Low Ch 704.00	SG reading (dBm) 6.63	Ant. Pol. (H/V) V	Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm) 6.08	EIRP (dBm) 8.23	ERP Limit (dBm) 34.77	(dBm) 36.99	(dB) -28.8	Notes
f MHz Low Ch 704.00 704.00 Mid Ch	SG reading (dBm) 6.63 16.08	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.55 0.55	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 6.08 15.53	EIRP (dBm) 8.23 17.68	ERP Limit (dBm) 34.77 34.77	(dBm) 36.99 36.99	(dB) -28.8 -19.3	Notes
f MHz Low Ch 704.00 704.00 Mid Ch 707.50 707.50	SG reading (dBm) 6.63 16.08 6.45	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.55 0.55 0.55	Antenna Gain (dBd) 0.0 0.0 0.0	ERP (dBm) 6.08 15.53 5.90	EIRP (dBm) 8.23 17.68 8.05	ERP Limit (dBm) 34.77 34.77 34.77	(dBm) 36.99 36.99 36.99	(dB) -28.8 -19.3 -28.9	Notes
f MHz Low Ch 704.00 704.00 Mid Ch 707.50	SG reading (dBm) 6.63 16.08 6.45	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.55 0.55 0.55	Antenna Gain (dBd) 0.0 0.0 0.0	ERP (dBm) 6.08 15.53 5.90	EIRP (dBm) 8.23 17.68 8.05	ERP Limit (dBm) 34.77 34.77 34.77	(dBm) 36.99 36.99 36.99	(dB) -28.8 -19.3 -28.9	Notes

Page 812 of 929

16QAM EIRP POWER FOR LTE BAND 12 (10.0MHZ BANDWIDTH)

Company	:									
Project #:		15U21635								
Date:		12/16/2015								
Test Eng	ineer:	G. Chan								
Configura		EUT only								
Mode:			16QAM 10MHz I	BW						
	g: Sunol T899, ion: Dipole S/N			e (s/n 245182-00;	3; SUCOF	LEX 104P	'EA)			
	SG reading	Ant Rol	Cable Loss	Antonna Gain	EDD	EIDD	EPPLimit	EIRP Limit	Margin	Notor
f MHz	SG reading (dBm)	Ant. Pol. (H/V)		Antenna Gain (dBd)	ERP (dBm)	EIRP (dBm)		EIRP Limit (dBm)	Margin (dB)	Notes
MHz	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	EIRP Limit (dBm)	Margin (dB)	Notes
MHz	-								-	Notes
MHz Low Ch	(dBm)	(H/V)	(dB)	(dBd)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	Notes
MHz Low Ch 704.00 704.00	(dBm)	(H/V) V	(dB) 0.55	(dBd) 0.0	(dBm) 4.99	(dBm) 7.14	(dBm) 34.77	(dBm) 36.99	(dB) -29.9	Notes
MHz Low Ch 704.00 704.00 Mid Ch	(dBm) 5.54 15.00	(H/V) V H	(dB) 0.55 0.55	(dBd) 0.0 0.0	(dBm) 4.99 14.45	(dBm) 7.14 16.60	(dBm) 34.77 34.77	(dBm) 36.99 36.99	(dB) -29.9 -20.4	Notes
MHz Low Ch 704.00 704.00 Mid Ch 707.50	(dBm) 5.54 15.00 5.52	(H/V) V H V	(dB) 0.55 0.55 0.55	(dBd) 0.0 0.0 0.0	(dBm) 4.99 14.45 4.97	(dBm) 7.14 16.60 7.12	(dBm) 34.77 34.77 34.77	(dBm) 36.99 36.99 36.99	(dB) -29.9 -20.4 -29.9	Notes
MHz Low Ch 704.00 704.00 Mid Ch	(dBm) 5.54 15.00	(H/V) V H	(dB) 0.55 0.55	(dBd) 0.0 0.0	(dBm) 4.99 14.45	(dBm) 7.14 16.60	(dBm) 34.77 34.77	(dBm) 36.99 36.99	(dB) -29.9 -20.4	Notes
MHz Low Ch 704.00 704.00 Mid Ch 707.50 707.50 High Ch	(dBm) 5.54 15.00 5.52 14.91	(H/V) V H V H	(dB) 0.55 0.55 0.55 0.55	(dBd) 0.0 0.0 0.0 0.0	(dBm) 4.99 14.45 4.97 14.36	(dBm) 7.14 16.60 7.12 16.51	(dBm) 34.77 34.77 34.77 34.77	(dBm) 36.99 36.99 36.99 36.99 36.99	(dB) -29.9 -20.4 -29.9 -29.9 -20.5	Notes
MHz Low Ch 704.00 704.00 Mid Ch 707.50	(dBm) 5.54 15.00 5.52	(H/V) V H V	(dB) 0.55 0.55 0.55	(dBd) 0.0 0.0 0.0	(dBm) 4.99 14.45 4.97	(dBm) 7.14 16.60 7.12	(dBm) 34.77 34.77 34.77	(dBm) 36.99 36.99 36.99	(dB) -29.9 -20.4 -29.9	Notes

Page 813 of 929

9.2.6. LTE BAND 17

QPSK EIRP POWER FOR LTE BAND 17 (5.0MHZ BANDWIDTH)

r:	15U21635 12/16/2015 G. Chan								
		QPSK 5MHz BV	/						
Dipole S/N: 0 SG reading	00022117, 4f	t SMA Cable (Cable Loss	Antenna Gain	ERP	EIRP	ERP Limit		Margin	Notes
(ubiii)	(11/2)	(ub)	(ubu)	(ubili)	(ubili)	(abiii)	(abiii)	(ub)	
6.90	v	0.55	0.0	6.35	8.50	34.77	36.99	-28.5	
16.85	Η	0.55	0.0	16.30	18.45	34.77	36.99	-18.5	
7.02	V	0.55	0.0	6.47	8.62	34.77	36.99	-28.4	
17.35	H	0.55	0.0	16.80	18.95	34.77	36.99	-18.0	
7.21	V	0.55	0.0	6.66	8.81	34.77	36.99	-28.2	
17.14	Н	0.55	0.0	16.59	18.74	34.77	36.99	-18.3	
	n <u>t:</u> nol T899, ar Dipole S/N: (G reading (dBm) <u>6.90</u> 16.85	EUT only LTE Band 17 nol T899, and Chamber Dipole S/N: 00022117, 4f GG reading Ant. Pol. (dBm) (H/V) 6.90 V 16.85 H 7.02 V	EUT only LTE Band 17 QPSK 5MHz BV nt: nol T899, and Chamber G Cable Dipole S/N: 00022117, 4ft SMA Cable (GG reading Ant. Pol. Cable Loss (dBm) (H/V) (dB) 6.90 V 0.55 16.85 H 0.55 16.85 H 0.55	EUT only LTE Band 17 QPSK 5MHz BW nt: nol T899, and Chamber G Cable Dipole S/N: 00022117, 4ft SMA Cable (s/n 245182-003; GG reading Ant. Pol. Cable Loss Antenna Gain (dBm) (H/V) (dB) (dBd) 6.90 V 0.55 0.0 16.85 H 0.55 0.0 16.85 H 0.55 0.0	EUT only LTE Band 17 QPSK 5MHz BW nt: nol T899, and Chamber G Cable Dipole S/N: 00022117, 4ft SMA Cable (s/n 245182-003; SUCOFLE GG reading Ant. Pol. Cable Loss Antenna Gain ERP (dBm) (H/V) (dB) (dBd) (dBm) 6.90 V 0.55 0.0 6.35 16.85 H 0.55 0.0 16.30 7.02 V 0.55 0.0 6.47	EUT only LTE Band 17 QPSK 5MHz BW nt: nol T899, and Chamber G Cable Dipole S/N: 00022117, 4ft SMA Cable (s/n 245182-003; SUCOFLEX 104PE/ GG reading Ant. Pol. Cable Loss Antenna Gain ERP (dBm) (dBm) (H/V) (dB) (dBd) (dBm) 6.90 V 0.55 0.0 6.35 8.50 16.85 H 0.55 0.0 16.30 18.45 7.02 V 0.55 0.0 6.47 8.62	EUT only LTE Band 17 QPSK 5MHz BW nt: nol T899, and Chamber G Cable Dipole S/N: 00022117, 4ft SMA Cable (s/n 245182-003; SUCOFLEX 104PEA) GG reading Ant. Pol. Cable Loss Antenna Gain ERP (dBm) (dBm) (dBm) (dB) (dBd) (dBm) (dBm) (dBm) 6.90 V 0.55 0.0 6.35 8.50 34.77 16.85 H 0.55 0.0 16.30 18.45 34.77 16.85 H 0.55 0.0 6.47 8.62 34.77	EUT only LTE Band 17 QPSK 5MHz BW nt: nol T899, and Chamber G Cable Dipole S/N: 00022117, 4ft SMA Cable (s/n 245182-003; SUCOFLEX 104PEA) GG reading Ant. Pol. Cable Loss Antenna Gain ERP (dBm) (dBm) (dBm) (dBm) (dBm) (dB) (dBd) (dBd) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) 6.90 V 0.55 0.0 6.35 8.50 34.77 36.99 16.85 H 0.55 0.0 16.30 18.45 34.77 36.99 16.85 H 0.55 0.0 6.47 8.62 34.77 36.99	EUT only LTE Band 17 QPSK 5MHz BW not not T899, and Chamber G Cable Dipole S/N: 00022117, 4ft SMA Cable (s/n 245182-003; SUCOFLEX 104PEA) SG reading Ant. Pol. Cable Loss Antenna Gain (dBm) (dBm

Page 814 of 929

16QAM EIRP POWER FOR LTE BAND 17 (5.0MHZ BANDWIDTH)

ompany:										
roject #:		15U21635								
ate:		12/16/2015								
est Engine	er:	G. Chan								
onfigurati		EUT only								
lode:			16QAM 5MHz B	W						
	Sunol T899, an	d Chamber	G Cable							
eceiving: ubstitution	: Dipole S/N: 0	0022117, 4ft	t SMA Cable (s/n 245182-003;						
eceiving: ubstitution	SG reading	00022117, 4ft Ant. Pol.	SMA Cable (Antenna Gain	ERP	EIRP	ERP Limit		Margin	Notes
eceiving: ubstitution f MHz	: Dipole S/N: 0	0022117, 4ft	t SMA Cable (EIRP Limit (dBm)	Margin (dB)	Notes
eceiving: ubstitution f <u>MHz</u> Low Ch	: Dipole S/N: 0 SG reading (dBm)	0022117, 4ft Ant. Pol. (H/V)	t SMA Cable (Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	(dBm)	(dB)	Notes
eceiving: ubstitution f MHz Low Ch 706.50	: Dipole S/N: 0 SG reading (dBm) 6.21	00022117, 4ft Ant. Pol. (H/V) V	Cable Loss (dB) 0.55	Antenna Gain (dBd) 0.0	ERP (dBm)	EIRP (dBm) 7.81	ERP Limit (dBm) 34.77	(dBm) 36.99	(dB) -29.2	Notes
eceiving: ubstitution f <u>MHz</u> Low Ch	: Dipole S/N: 0 SG reading (dBm)	0022117, 4ft Ant. Pol. (H/V)	t SMA Cable (Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	(dBm)	(dB)	Notes
ubstitution f MHz Low Ch 706.50	: Dipole S/N: 0 SG reading (dBm) 6.21	00022117, 4ft Ant. Pol. (H/V) V	Cable Loss (dB) 0.55	Antenna Gain (dBd) 0.0	ERP (dBm)	EIRP (dBm) 7.81	ERP Limit (dBm) 34.77	(dBm) 36.99	(dB) -29.2	Notes
eceiving: ubstitution f MHz Low Ch 706.50 706.50 Mid Ch 710.00	:: Dipole S/N: 0 SG reading (dBm) 6.21 15.47 6.27	00022117, 4ft Ant. Pol. (H/V) V H	Cable Loss (dB) 0.55	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 5.66 14.92 5.72	EIRP (dBm) 7.81 17.07 7.87	ERP Limit (dBm) 34.77 34.77 34.77	(dBm) 36.99 36.99 36.99	(dB) -29.2 -19.9 -29.1	Notes
eceiving: ubstitution f MHz Low Ch 706.50 706.50 Mid Ch	:: Dipole S/N: 0 SG reading (dBm) 6.21 15.47	00022117, 4ft Ant. Pol. (H/V) V H	Cable Loss (dB) 0.55 0.55	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 5.66 14.92	EIRP (dBm) 7.81 17.07	ERP Limit (dBm) 34.77 34.77	(dBm) 36.99 36.99	(dB) -29.2 -19.9	Notes
eceiving: ubstitution f MHz Low Ch 706.50 706.50 Mid Ch 710.00 710.00	:: Dipole S/N: 0 SG reading (dBm) 6.21 15.47 6.27	00022117, 4ft Ant. Pol. (H/V) V H	t SMA Cable (Cable Loss (dB) 0.55 0.55 0.55	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 5.66 14.92 5.72	EIRP (dBm) 7.81 17.07 7.87	ERP Limit (dBm) 34.77 34.77 34.77	(dBm) 36.99 36.99 36.99	(dB) -29.2 -19.9 -29.1	Notes
f MHz Low Ch 706.50 706.50 Mid Ch 710.00	:: Dipole S/N: 0 SG reading (dBm) 6.21 15.47 6.27	00022117, 4ft Ant. Pol. (H/V) V H	t SMA Cable (Cable Loss (dB) 0.55 0.55 0.55	Antenna Gain (dBd) 0.0 0.0	ERP (dBm) 5.66 14.92 5.72	EIRP (dBm) 7.81 17.07 7.87	ERP Limit (dBm) 34.77 34.77 34.77	(dBm) 36.99 36.99 36.99	(dB) -29.2 -19.9 -29.1	Notes

Page 815 of 929

QPSK EIRP POWER FOR LTE BAND 17 (10.0MHZ BANDWIDTH)

				ated Chamber (-					
ompany:										
Project #:		15U21635								
)ate:		12/16/2015								
est Engin		G. Chan								
Configurati Node:		EUT only	QPSK 10MHz B							
Jue.		LIL Dallu II V		**						
st Equip	ment									
eceiving.	Sunol T899, ar	d Chamber	G Cable							
				s/n 245182-003; :			a			
abstitutio	n. Dipole Sill. (Control Capie (3/11 240 102-000, 1			9			
f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	ERP	EIRP	ERP Limit	EIRP Limit	Margin	Notes
MHz	(dBm)	(H/V)	(dB)	(dBd)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	
			1							
710.00	7.37	V	0.55	0.0	6.82	8.97	34.77	36.99	-28.0	
	17.23	Н	0.55	0.0	16.68	18.83	34.77	36.99	-18.2	
710.00										
/10.00										

Page 816 of 929

16QAM EIRP POWER FOR LTE BAND 17 (10.0MHZ BANDWIDTH)

company:										
roject #:		15U21635								
)ate:		12/16/2015								
est Engin		G. Chan								
onfigurati Iode:		EUT only	16QAM 10MHz	DW						
est Equip eceiving:	<u>ment:</u> Sunol T899, an	d Chamber	G Cable							
ubstitutio	-			s/n 245182-003;						
	OC and a diam	Ant Dol	Cable Lose	Antenna Gain	ERP	EIRP	ERP Limit	EIRP Limit	Margin	Notes
f	SG reading							1 1		
f MHz	(dBm)	(H/V)	(dB)	(dBd)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	
-					(dBm)	(dBm) 8.03	(dBm) 34.77	(dBm) 36.99	(dB) -29.0	
-					(dBm)	(dBm)	(dBm)	(dBm)	(dB)	

Page 817 of 929

9.2.7. LTE BAND 25

QPSK EIRP POWER FOR LTE BAND 25 (1.4MHZ BANDWIDTH)

Company								
Project #:		15U21635						
Date:		12/18/2015						
lest Engi	neer:	G. Chan						
Configura		EUT only						
Node:			PSK 1.4MHz BW					
Substituti	on: Horn T59 S	ubstitution, 4	lft SMA Cable (s	/n 245182-003; SUC	OFLEX 104PE	EA)		
f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
f GHz		-				-	Margin EIRP (dB)	Notes
f GHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	-	Notes
f GHz Low Ch 1.851 1.851	SG reading (dBm) 12.7	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 8.05	EIRP (dBm) 19.73	Limit (dBm) 33.0	(dB) -13.3	Notes
f GHz 1.851 1.851 Mid Ch	SG reading (dBm) 12.7 12.2	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 19.73 19.27	Limit (dBm) 33.0 33.0	(dB) -13.3 -13.7	Notes
f GHz Low Ch 1.851 1.851 Mid Ch 1.883	SG reading (dBm) 12.7 12.2 13.0	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 19.73 19.27 20.03	Limit (dBm) 33.0 33.0 33.0	(dB) -13.3 -13.7 -13.0	Notes
f GHz 1.851 1.851 Mid Ch	SG reading (dBm) 12.7 12.2	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 19.73 19.27	Limit (dBm) 33.0 33.0	(dB) -13.3 -13.7	Notes
f GHz Low Ch 1.851 1.851 Mid Ch 1.883 1.883 High Ch	SG reading (dBm) 12.7 12.2 13.0 12.8	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.98 0.98 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03 8.03	EIRP (dBm) 19.73 19.27 20.03 19.80	Limit (dBm) 33.0 33.0 33.0 33.0	(dB) -13.3 -13.7 -13.0 -13.2	Notes
f GHz Low Ch 1.851 1.851 Mid Ch 1.883 1.883	SG reading (dBm) 12.7 12.2 13.0	Ant. Pol. (H/V) V H	Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 19.73 19.27 20.03	Limit (dBm) 33.0 33.0 33.0	(dB) -13.3 -13.7 -13.0	Notes

Page 818 of 929

16QAM EIRP POWER FOR LTE BAND 25 (1.4MHZ BANDWIDTH)

company:								
roject #:		15U21635						
ate:		12/18/2015						
est Engi	neer:	G. Chan						
Configura		EUT only						
lode:			60 AM 1.4MHz BW					
-			G SMA Cables 4ft SMA Cable (s	s/n 245182-003; SUC	OFLEX 104PE	EA)		
-				s/n 245182-003; SUC Antenna Gain (dBi)	OFLEX 104PE EIRP (dBm)	EA) Limit (dBm)	Margin EIRP (dB)	Notes
f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.851	on: Horn T59 S SG reading (dBm) 12.1	Substitution, 4 Ant. Pol. (H/V) V	tft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 19.13	Limit (dBm) 33.0	(dB) -13.9	Notes
f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.851 1.851	on: Horn T59 S SG reading (dBm) 12.1	Substitution, 4 Ant. Pol. (H/V) V	tft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 19.13	Limit (dBm) 33.0	(dB) -13.9	Notes
f GHz Low Ch 1.851	on: Horn T59 S SG reading (dBm) 12.1	Substitution, 4 Ant. Pol. (H/V) V	tft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 19.13	Limit (dBm) 33.0	(dB) -13.9	Notes
f GHz Low Ch 1.851 1.851 Mid Ch	on: Horn T59 S SG reading (dBm) 12.1 11.9	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 19.13 19.00	Limit (dBm) 33.0 33.0	(dB) -13.9 -14.0	Notes
f GHz Low Ch 1.851 1.851 Mid Ch 1.883 1.883	on: Horn T59 \$ SG reading (dBm) 12.1 11.9 12.3	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 19.13 19.00 19.30	Limit (dBm) 33.0 33.0 33.0	(dB) -13.9 -14.0 -13.7	Notes
f GHz Low Ch 1.851 1.851 Mid Ch 1.883	on: Horn T59 \$ SG reading (dBm) 12.1 11.9 12.3	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 19.13 19.00 19.30	Limit (dBm) 33.0 33.0 33.0	(dB) -13.9 -14.0 -13.7	Notes

Page 819 of 929

QPSK EIRP POWER FOR LTE BAND 25 (3.0MHZ BANDWIDTH)

company:								
Project #:		15U21635						
ate:		12/18/2015						
lest Engi	neer:	G. Chan						
Configura	tion:	EUT only						
/lode:		LTE Band 25 Q	PSK 3MHz BW					
eceiving			G SMA Cables 4ft SMA Cable (s	s/n 245182-003; SUC	OFLEX 104PE	EA)		
Substituti f	on: Horn T59 S	Substitution, 4 Ant. Pol.	4ft SMA Cable (s	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
Receiving Substituti f GHz	on: Horn T59 S	Substitution, 4	4ft SMA Cable (s				Margin EIRP (dB)	Notes
Receiving Substituti	on: Horn T59 S	Substitution, 4 Ant. Pol.	4ft SMA Cable (s	Antenna Gain	EIRP	Limit	-	Notes
Receiving Substituti f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
Receiving Substituti GHz Low Ch 1.852 1.852	on: Horn T59 S SG reading (dBm) 12.8	Substitution, 4 Ant. Pol. (H/V) V	tft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 19.89	Limit (dBm) 33.0	(dB)	Notes
Receiving Substituti f GHz Low Ch 1.852 1.852 Mid Ch	SG reading (dBm) 12.8 12.4	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 19.89 19.48	Limit (dBm) 33.0 33.0	(dB) -13.1 -13.5	Notes
Receiving Substituti GHz Low Ch 1.852 1.852	on: Horn T59 S SG reading (dBm) 12.8	Substitution, 4 Ant. Pol. (H/V) V	tft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 19.89	Limit (dBm) 33.0	(dB)	Notes
Receiving Substituti f GHz Low Ch 1.852 1.852 Mid Ch 1.883 1.883	SG reading (dBm) 12.8 12.4 13.1	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 19.89 19.48 20.13	Limit (dBm) 33.0 33.0 33.0	(dB) -13.1 -13.5 -12.9	Notes
Receiving Substituti f GHz Low Ch 1.852 1.852 Mid Ch 1.883	SG reading (dBm) 12.8 12.4 13.1	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 19.89 19.48 20.13	Limit (dBm) 33.0 33.0 33.0	(dB) -13.1 -13.5 -12.9	Notes

Page 820 of 929

16QAM EIRP POWER FOR LTE BAND 25 (3.0MHZ BANDWIDTH)

ompany:								
roject #:		15U21635						
ate:		12/18/2015						
est Engi	neer:	G. Chan						
onfigura		EUT only						
lode:			6QAM 3MHz BW					
	g: Horn T862, a on: Horn T59 S			/n 245182-003; SUC	OFLEX 104PE	A)		
ubstituti	on: Horn T59 S	Substitution, 4	4ft SMA Cable (s	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
f GHz	on: Horn T59 S	Substitution, 4	4ft SMA Cable (s				Margin EIRP (dB)	Notes
f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz	on: Horn T59 S	Substitution, 4	4ft SMA Cable (s	Antenna Gain	EIRP	Limit	-	Notes
f GHz Low Ch 1.852 1.852	on: Horn T59 S SG reading (dBm) 12.3	Ant. Pol. (H/V)	tft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi) 8.05	EIRP (dBm) 19.36	Limit (dBm) 33.0	(dB) -13.6	Notes
f GHz Low Ch 1.852 1.852 Mid Ch	on: Horn T59 S SG reading (dBm) 12.3 11.7	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 19.36 18.78	Limit (dBm) 33.0 33.0	(dB) -13.6 -14.2	Notes
ubstituti f GHz Low Ch 1.852 1.852 Mid Ch 1.883	on: Horn T59 \$ SG reading (dBm) 12.3 11.7 12.4	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 19.36 18.78 19.45	Limit (dBm) 33.0 33.0 33.0	(dB) -13.6 -14.2 -13.6	Notes
dbstituti f GHz Low Ch 1.852 1.852 Mid Ch	on: Horn T59 S SG reading (dBm) 12.3 11.7	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 19.36 18.78	Limit (dBm) 33.0 33.0	(dB) -13.6 -14.2	Notes
f GHz Low Ch 1.852 1.852 1.853 1.883 1.883 High Ch	on: Horn T59 \$ SG reading (dBm) 12.3 11.7 12.4 12.3	Substitution, 4 Ant. Pol. (H/V) V H V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03 8.03	EIRP (dBm) 19.36 18.78 19.45 19.38	Limit (dBm) 33.0 33.0 33.0 33.0	(dB) -13.6 -14.2 -13.6 -13.6	Notes
ubstituti f GHz Low Ch 1.852 1.852 Mid Ch 1.883 1.883	on: Horn T59 \$ SG reading (dBm) 12.3 11.7 12.4	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 19.36 18.78 19.45	Limit (dBm) 33.0 33.0 33.0	(dB) -13.6 -14.2 -13.6	Notes

Page 821 of 929

QPSK EIRP POWER FOR LTE BAND 25 (5.0MHZ BANDWIDTH)

ompany:								
roject #:		15U21635						
ate:		12/18/2015						
est Engi	neer:	G. Chan						
onfigura		EUT only						
lode:			PSK 5MHz BW					
eceiving			G SMA Cables 4ft SMA Cable (s	/n 245182-003; SUC	OFLEX 104PE	EA)		
ubstituti f	on: Horn T59 S SG reading	Substitution, 4	Ift SMA Cable (s	Antenna Gain	EIRP	Limit	Margin EIRP (dB)	Notes
eceiving Substituti f GHz	on: Horn T59 S	Substitution, 4	ft SMA Cable (s				Margin EIRP (dB)	Notes
eceiving Substituti	on: Horn T59 S SG reading	Substitution, 4	Ift SMA Cable (s	Antenna Gain	EIRP	Limit	-	Notes
eceiving ubstituti f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.853 1.853	on: Horn T59 S SG reading (dBm) 12.0	Substitution, 4 Ant. Pol. (H/V) V	fft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi) 8.05	EIRP (dBm)	Limit (dBm) 33.0	(dB) -14.0	Notes
f GHz Low Ch 1.853 1.853 Mid Ch	on: Horn T59 S SG reading (dBm) 12.0 11.8	Substitution, 4 Ant. Pol. (H/V) V H	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 19.03 18.84	Limit (dBm) 33.0 33.0	(dB) -14.0 -14.2	Notes
f GHz Low Ch 1.853 1.853	on: Horn T59 S SG reading (dBm) 12.0	Substitution, 4 Ant. Pol. (H/V) V	fft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi) 8.05	EIRP (dBm)	Limit (dBm) 33.0	(dB) -14.0	Notes
Receiving ubstituti GHz Low Ch 1.853 1.853 Mid Ch 1.883 1.883	on: Horn T59 \$ SG reading (dBm) 12.0 11.8 13.0	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 19.03 18.84 20.07	Limit (dBm) 33.0 33.0 33.0	(dB) -14.0 -14.2 -12.9	Notes
eceiving substituti f GHz Low Ch 1.853 1.853 Mid Ch 1.883	on: Horn T59 \$ SG reading (dBm) 12.0 11.8 13.0	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 19.03 18.84 20.07	Limit (dBm) 33.0 33.0 33.0	(dB) -14.0 -14.2 -12.9	Notes

Page 822 of 929

16QAM EIRP POWER FOR LTE BAND 25 (5.0MHZ BANDWIDTH)

ompany:								
roject #:		15U21635						
ate:		12/18/2015						
est Engi	neer:	G. Chan						
onfigura	tion:	EUT only						
ode:		-	QAM 5MHz BW					
ceiving	: Horn T862, a		G SMA Cables Ift SMA Cable (s	s/n 245182-003; SUC	OFLEX 104PE	EA)		
	: Horn T862, a			s/n 245182-003; SUC Antenna Gain (dBi)	OFLEX 104PE EIRP (dBm)	EA) Limit (dBm)	Margin EIRP (dB)	Notes
eceiving ubstituti f GHz Low Ch	: Horn T862, a on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
eceiving ubstituti f GHz Low Ch 1.853	: Horn T862, a on: Horn T59 S SG reading (dBm) 11.8	Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi) 8.05	EIRP (dBm) 18.85	Limit (dBm) 33.0	(dB)	Notes
eceiving ubstituti f GHz Low Ch	: Horn T862, a on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
eceiving ubstituti f GHz Low Ch 1.853 1.853	: Horn T862, a on: Horn T59 S SG reading (dBm) 11.8	Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi) 8.05	EIRP (dBm) 18.85	Limit (dBm) 33.0	(dB)	Notes
eceiving ubstituti f GHz Low Ch 1.853	: Horn T862, a on: Horn T59 S SG reading (dBm) 11.8	Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi) 8.05	EIRP (dBm) 18.85	Limit (dBm) 33.0	(dB)	Notes
f GHz Low Ch 1.853 1.853 Mid Ch	: Horn T862, a on: Horn T59 S SG reading (dBm) 11.8 11.5	Substitution, 4 Ant. Pol. (H/V) V H	Ift SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 18.85 18.56	Limit (dBm) 33.0 33.0	(dB) -14.2 -14.4	Notes
eceiving ubstituti GHz Low Ch 1.853 1.853 Mid Ch 1.883 1.883	: Horn T862, a on: Horn T59 S SG reading (dBm) 11.8 11.5 11.8	Substitution, 4 Ant. Pol. (H/V) V H V	Ift SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 18.85 18.56 18.88	Limit (dBm) 33.0 33.0 33.0	(dB) -14.2 -14.4 -14.1	Notes
eceiving ubstituti f GHz Low Ch 1.853 1.853 Mid Ch 1.883	: Horn T862, a on: Horn T59 S SG reading (dBm) 11.8 11.5 11.8	Substitution, 4 Ant. Pol. (H/V) V H V	Ift SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 18.85 18.56 18.88	Limit (dBm) 33.0 33.0 33.0	(dB) -14.2 -14.4 -14.1	Notes

Page 823 of 929

QPSK EIRP POWER FOR LTE BAND 25 (10.0MHZ BANDWIDTH)

company:								
roject #:		15U21635						
ate:		12/18/2015						
est Engi	neer:	G. Chan						
Configura		EUT only						
lode:			PSK 10MHz BW					
eceiving			G SMA Cables 4ft SMA Cable (s	s/n 245182-003; SUC	OFLEX 104PE	EA)		
-	on: Horn T59 S SG reading	Ant. Pol.	4ft SMA Cable (s Cable Loss	Antenna Gain	EIRP	Limit	Margin EIRP (dB)	Notes
Receiving Substituti	on: Horn T59 S	Substitution, 4	4ft SMA Cable (s				Margin EIRP (dB)	Notes
Receiving Substituti f GHz Low Ch 1.855	on: Horn T59 S SG reading (dBm) 12.6	Ant. Pol. (H/V)	tft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm)	Limit (dBm) 33.0	(dB) -13.3	Notes
Receiving Substituti f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.855 1.855	on: Horn T59 S SG reading (dBm) 12.6	Ant. Pol. (H/V)	tft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm)	Limit (dBm) 33.0	(dB) -13.3	Notes
Receiving Substituti f GHz Low Ch 1.855 1.855 Mid Ch	on: Horn T59 S SG reading (dBm) 12.6 10.9	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 19.66 18.00	Limit (dBm) 33.0 33.0	(dB) -13.3 -15.0	Notes
f GHz Low Ch 1.855 1.855	on: Horn T59 S SG reading (dBm) 12.6	Ant. Pol. (H/V)	tft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm)	Limit (dBm) 33.0	(dB) -13.3	Notes
Receiving substituti <u>f</u> <u>GHz</u> Low Ch 1.855 1.855 Mid Ch 1.883 1.883	SG reading (dBm) 12.6 10.9 12.5	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 19.66 18.00 19.56	Limit (dBm) 33.0 33.0 33.0	(dB) -13.3 -15.0 -13.4	Notes
Receiving Substituti f GHz Low Ch 1.855 1.855 Mid Ch 1.883	SG reading (dBm) 12.6 10.9 12.5	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 19.66 18.00 19.56	Limit (dBm) 33.0 33.0 33.0	(dB) -13.3 -15.0 -13.4	Notes

Page 824 of 929

16QAM EIRP POWER FOR LTE BAND 25 (10.0MHZ BANDWIDTH)

ompany								
roject #:		15U21635						
ate:		12/18/2015						
est Engi	neer:	G. Chan						
onfigura		EUT only						
lode:			QAM 10MHz BW					
eceiving			G SMA Cables 4ft SMA Cable (s	s/n 245182-003; SUC	OFLEX 104PE	EA)		
f	on: Horn T59 S	Substitution, 4	ft SMA Cable (s	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
eceiving Jubstituti f GHz	on: Horn T59 S	Substitution, 4	\$ft SMA Cable (s				Margin EIRP (dB)	Notes
eceiving Substituti	on: Horn T59 S	Substitution, 4	ft SMA Cable (s	Antenna Gain	EIRP	Limit	-	Notes
eceiving ubstituti f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.855 1.855	on: Horn T59 S SG reading (dBm) 12.1	Substitution, 4 Ant. Pol. (H/V) V	fft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 19.13	Limit (dBm) 33.0	(dB) -13.9	Notes
f GHz Low Ch 1.855 1.855 Mid Ch	on: Horn T59 \$ SG reading (dBm) 12.1 10.4	Substitution, 4 Ant. Pol. (H/V) V H	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05	EIRP (dBm) 19.13 17.48	Limit (dBm) 33.0 33.0	(dB) -13.9 -15.5	Notes
f GHz Low Ch 1.855 1.855	on: Horn T59 S SG reading (dBm) 12.1	Substitution, 4 Ant. Pol. (H/V) V	fft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.05	EIRP (dBm) 19.13	Limit (dBm) 33.0	(dB) -13.9	Notes
Receiving ubstituti GHz Low Ch 1.855 1.855 Mid Ch 1.883 1.883	on: Horn T59 \$ SG reading (dBm) 12.1 10.4 11.6	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 19.13 17.48 18.65	Limit (dBm) 33.0 33.0 33.0	(dB) -13.9 -15.5 	Notes
f GHz Low Ch 1.855 1.855 Mid Ch 1.883	on: Horn T59 \$ SG reading (dBm) 12.1 10.4 11.6	Substitution, 4 Ant. Pol. (H/V) V H V	fft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.05 8.05 8.03	EIRP (dBm) 19.13 17.48 18.65	Limit (dBm) 33.0 33.0 33.0	(dB) -13.9 -15.5 	Notes

Page 825 of 929

QPSK EIRP POWER FOR LTE BAND 25 (15.0MHZ BANDWIDTH)

company:								
roject #:		15U21635						
ate:		12/18/2015						
est Engi	neer:	G. Chan						
Configura		EUT only						
lode:			PSK 15MHz BW					
eceiving	: Horn T862, a		G SMA Cables 4ft SMA Cable (s	s/n 245182-003; SUC	OFLEX 104PE	EA)		
-	: Horn T862, a			s/n 245182-003; SUC Antenna Gain (dBi)	OFLEX 104PE EIRP (dBm)	EA) Limit (dBm)	Margin EIRP (dB)	Notes
Receiving Substituti f GHz Low Ch	: Horn T862, a on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
Receiving Substituti f GHz Low Ch 1.858	: Horn T862, a on: Horn T59 S SG reading (dBm)	Ant. Pol. (H/V)	tft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.04	EIRP (dBm) 19.28	Limit (dBm) 33.0	(dB) -13.7	Notes
Receiving Substituti f GHz Low Ch	: Horn T862, a on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.858 1.858	: Horn T862, a on: Horn T59 S SG reading (dBm)	Ant. Pol. (H/V)	tft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.04	EIRP (dBm) 19.28	Limit (dBm) 33.0	(dB) -13.7	Notes
Receiving Substituti f GHz Low Ch 1.858	: Horn T862, a on: Horn T59 S SG reading (dBm)	Ant. Pol. (H/V)	tft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.04	EIRP (dBm) 19.28	Limit (dBm) 33.0	(dB) -13.7	Notes
Receiving Substituti f GHz Low Ch 1.858 1.858 Mid Ch	: Horn T862, a on: Horn T59 S SG reading (dBm) 12.2 11.8	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04	EIRP (dBm) 19.28 18.90	Limit (dBm) 33.0 33.0	(dB) -13.7 -14.1	Notes
Receiving substituti <u>f</u> <u>GHz</u> Low Ch 1.858 1.858 Mid Ch 1.883 1.883	: Horn T862, a on: Horn T59 S SG reading (dBm) 12.2 11.8 12.7	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 19.28 18.90 19.70	Limit (dBm) 33.0 33.0 33.0	(dB) -13.7 -14.1 -13.3	Notes
Receiving Substituti f GHz Low Ch 1.858 1.858 Mid Ch 1.883	: Horn T862, a on: Horn T59 S SG reading (dBm) 12.2 11.8 12.7	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 19.28 18.90 19.70	Limit (dBm) 33.0 33.0 33.0	(dB) -13.7 -14.1 -13.3	Notes

Page 826 of 929

16QAM EIRP POWER FOR LTE BAND 25 (15.0MHZ BANDWIDTH)

_								
Company:								
Project #:		15U21635						
Date:		12/18/2015						
lest Engi		G. Chan						
Configura		EUT only						
/lode:		LTE Band 25 16	6QAM 15MHz BW					
		nd Chamber	G SMA Cables					
	: Horn T862, a			s/n 245182-003; SUC Antenna Gain	OFLEX 104PE	EA)	Margin EIRP	Notes
Receiving Substituti	: Horn T862, a on: Horn T59 §	Substitution, 4	4ft SMA Cable (s				Margin EIRP (dB)	Notes
Receiving Substituti f GHz Low Ch	: Horn T862, a on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
Receiving Substituti f GHz Low Ch 1.858	: Horn T862, a on: Horn T59 \$ SG reading (dBm) 12.0	Substitution, 4 Ant. Pol. (H/V) V	4ft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.04	EIRP (dBm) 19.09	Limit (dBm) 33.0	(dB) -13.9	Notes
Receiving Substituti f GHz Low Ch	: Horn T862, a on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
Receiving Substituti GHz Low Ch 1.858 1.858	: Horn T862, a on: Horn T59 \$ SG reading (dBm) 12.0	Substitution, 4 Ant. Pol. (H/V) V	4ft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.04	EIRP (dBm) 19.09	Limit (dBm) 33.0	(dB) -13.9	Notes
Receiving Substituti f GHz Low Ch 1.858	: Horn T862, a on: Horn T59 \$ SG reading (dBm) 12.0	Substitution, 4 Ant. Pol. (H/V) V	4ft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.04	EIRP (dBm) 19.09	Limit (dBm) 33.0	(dB) -13.9	Notes
Receiving Substituti f GHz Low Ch 1.858 1.858 Mid Ch	: Horn T862, a on: Horn T59 S SG reading (dBm) 12.0 11.4	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04	EIRP (dBm) 19.09 18.48	Limit (dBm) 33.0 33.0	(dB) -13.9 -14.5	Notes
Receiving Substituti f GHz Low Ch 1.858 1.858 Mid Ch 1.883 1.883	: Horn T862, a on: Horn T59 S SG reading (dBm) 12.0 11.4 11.8	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 19.09 18.48 18.84	Limit (dBm) 33.0 33.0 33.0	(dB) -13.9 -14.5 -14.2	Notes
Receiving Substituti f GHz Low Ch 1.858 1.858 Mid Ch 1.883	: Horn T862, a on: Horn T59 S SG reading (dBm) 12.0 11.4 11.8	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 19.09 18.48 18.84	Limit (dBm) 33.0 33.0 33.0	(dB) -13.9 -14.5 -14.2	Notes

Page 827 of 929

QPSK EIRP POWER FOR LTE BAND 25 (20.0MHZ BANDWIDTH)

company:								
Project #:		15U21635						
)ate:		12/18/2015						
lest Engi	neer:	G. Chan						
Configura		EUT only						
/lode:			PSK 20MHz BW					
eceiving			G SMA Cables 4ft SMA Cable (s	s/n 245182-003; SUC	OFLEX 104PE	EA)		
-	on: Horn T59 S SG reading	Substitution, 4 Ant. Pol.	4ft SMA Cable (s Cable Loss	Antenna Gain	EIRP	Limit	Margin EIRP (dB)	Notes
Receiving Substituti	on: Horn T59 S	Substitution, 4	4ft SMA Cable (s				Margin EIRP (dB)	Notes
Receiving Substituti f GHz	on: Horn T59 S SG reading	Substitution, 4 Ant. Pol.	4ft SMA Cable (s Cable Loss	Antenna Gain	EIRP	Limit	-	Notes
Receiving Substituti f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
Receiving Substituti GHz Low Ch 1.860 1.860	on: Horn T59 S SG reading (dBm) 12.4	Substitution, 4 Ant. Pol. (H/V) V	4ft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.04	EIRP (dBm) 19.49	Limit (dBm) 33.0	(dB) -13.5	Notes
Receiving Substituti f GHz Low Ch 1.860 1.860 Mid Ch	SG reading (dBm) 12.4 11.3	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04	EIRP (dBm) 19.49 18.32	Limit (dBm) 33.0 33.0	(dB) -13.5 -14.7	Notes
Receiving Substituti GHz Low Ch 1.860 1.860	on: Horn T59 S SG reading (dBm) 12.4	Substitution, 4 Ant. Pol. (H/V) V	4ft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.04	EIRP (dBm) 19.49	Limit (dBm) 33.0	(dB) -13.5	Notes
Receiving Substituti f GHz Low Ch 1.860 1.860 Mid Ch 1.883 1.883	on: Horn T59 \$ SG reading (dBm) 12.4 11.3 12.0	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 19.49 18.32 19.04	Limit (dBm) 33.0 33.0 33.0	(dB) -13.5 -14.7 -14.0	Notes
Receiving Substituti f GHz Low Ch 1.860 1.860 Mid Ch 1.883	on: Horn T59 \$ SG reading (dBm) 12.4 11.3 12.0	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 19.49 18.32 19.04	Limit (dBm) 33.0 33.0 33.0	(dB) -13.5 -14.7 -14.0	Notes

Page 828 of 929

16QAM EIRP POWER FOR LTE BAND 25 (20.0MHZ BANDWIDTH)

company:								
roject #:		15U21635						
)ate:		12/18/2015						
lest Engi	neer:	G. Chan						
Configura		EUT only						
lode:			QAM 20MHz BW					
-			G SMA Cables 4ft SMA Cable (s	s/n 245182-003; SUC	OFLEX 104PE	EA)		
-				s/n 245182-003; SUC Antenna Gain (dBi)	OFLEX 104PE EIRP (dBm)	EA) Limit (dBm)	Margin EIRP (dB)	Notes
Substituti f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.860	on: Horn T59 S SG reading (dBm) 12.0	Ant. Pol. (H/V)	tft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.04	EIRP (dBm) 19.10	Limit (dBm) 33.0	(dB) -13.9	Notes
Substituti f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 1.860	on: Horn T59 S SG reading (dBm) 12.0	Ant. Pol. (H/V)	tft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.04	EIRP (dBm) 19.10	Limit (dBm) 33.0	(dB) -13.9	Notes
f GHz Low Ch 1.860 1.860	on: Horn T59 S SG reading (dBm) 12.0	Ant. Pol. (H/V)	tft SMA Cable (s Cable Loss (dB) 0.98	Antenna Gain (dBi) 8.04	EIRP (dBm) 19.10	Limit (dBm) 33.0	(dB) -13.9	Notes
f GHz Low Ch 1.860 1.860 Mid Ch	on: Horn T59 S SG reading (dBm) 12.0 10.9	Substitution, 4 Ant. Pol. (H/V) V H	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04	EIRP (dBm) 19.10 17.91	Limit (dBm) 33.0 33.0	(dB) -13.9 -15.1	Notes
f GHz Low Ch 1.860 1.860 Mid Ch 1.883 1.883	on: Horn T59 \$ SG reading (dBm) 12.0 10.9 11.3	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 19.10 17.91 18.37	Limit (dBm) 33.0 33.0 33.0	(dB) -13.9 -15.1 -14.6	Notes
f GHz Low Ch 1.860 1.860 Mid Ch 1.883	on: Horn T59 \$ SG reading (dBm) 12.0 10.9 11.3	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable (s Cable Loss (dB) 0.98 0.98	Antenna Gain (dBi) 8.04 8.04 8.03	EIRP (dBm) 19.10 17.91 18.37	Limit (dBm) 33.0 33.0 33.0	(dB) -13.9 -15.1 -14.6	Notes

Page 829 of 929

9.2.8. LTE BAND 26

QPSK EIRP POWER FOR LTE BAND 26 (1.4MHZ BANDWIDTH)

Company: Project #:										
roiect #:										
		15U21635								
ate:		12/16/2015								
est Engine		G. Chan								
onfiguratio		EUT only	PSK 1.4MHz BW							
est Equipr										
	Sunol T899, a									
ubstitutior	n: Dipole S/N	: 00022117, 4f	t SMA Cable (s/	n 245182-003; SUC	OFLEX 104PE	EA)				
f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	ERP	EIRP	ERP L imit	EIRP Limit	Margin	Notes
GHz	(dBm)	(H/V)	(dB)	(dBi)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	Notes
Low Ch	(ubiii)	(111)	(42)	(40.)	(abiii)	(abiii)	(ubiii)	(ubiii)	(42)	
814.70	10.24	V	0.62	0.0	9.62	11.77	38.45	40.60	-28.8	
814.70	16.95	Н	0.62	0.0	16.33	18.48	38.45	40.60	-22.1	
Mid Ch										
819.00	10.11	V	0.62	0.0	9.49	11.64	38.45	40.60	-29.0	
819.00	17.98	Н	0.62	0.0	17.36	19.51	38.45	40.60	-21.1	
High Ch 823.30	9.92	V	0.62	0.0	9.30	11.45	38.45	40.60	-29.2	
823.30	17.70	H	0.62	0.0	17.08	19.23	38.45	40.60	-25.2	

Page 830 of 929

16QAM EIRP POWER FOR LTE BAND 26 (1.4MHZ BANDWIDTH)

ompany:										
roject #:		15U21635								
ate:		12/16/2015								
est Engir		G. Chan								
onfigurat		EUT only								
ode:		LTE Band 26 10	6QAM 1.4MHz BW							
	: Sunol T899, a			n 245182-003; SUC(Antenna Gain (dBi)	OFLEX 104PE ERP (dBm)	EA) EIRP (dBm)	ERP Limit (dBm)	EIRP Limit (dBm)	Margin (dB)	Notes
Low Ch	(42.11)	()	(42)	(42.)	(ubiii)	(42.11)	(uDiii)	(uDiii)	(42)	
814.70	9.37	V	0.62	0.0	8.75	10.90	38.45	40.60	-29.7	
814.70	16.10	Н	0.62	0.0	15.48	17.63	38.45	40.60	-23.0	
Mid Ch										
819.00	9.23	V	0.62	0.0	8.61	10.76	38.45	40.60	-29.8	
819.00	17.16	Н	0.62	0.0	16.54	18.69	38.45	40.60	-21.9	
liah Ch		V	0.62	0.0	8.43	10.58	38.45	40.60	-30.0	
ligh Ch 823.30	9.05					18.19	38.45	40.60	-22.4	

Page 831 of 929

QPSK EIRP POWER FOR LTE BAND 26 (3.0MHZ BANDWIDTH)

		mont Radiated							
l	LTE Band 26 QI	PSK 3MHz BW							
				OFLEX 104PEA) ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	EIRP Limit (dBm)	Margin (dB)	Notes
17.34	Н	0.62	0.0	16.72	18.87	38.45	40.60	-21.7	
10.62	v	0.62	0.0	10.00	12.15	38.45	40.60	-28.5	
17.96	H	0.62	0.0	17.34	19.49	38.45	40.60	-21.1	
40.00		0.00			44.70	20.45	40.00	00.0	
10.26	V H	0.62	0.0	9.64 17.19	11.79 19.34	38.45 38.45	40.60 40.60	-28.8 -21.3	
1	eer: on: sunol T899, a 1: Dipole S/N: SG reading (dBm) 10.68 17.34 10.62	EUT only LTE Band 26 QI ment: Sunol T899, and Chamber h:: Dipole S/N: 00022117, 4f GG reading (dBm) Ant. Pol. (H/V) 10.68 V 17.34 H 10.62 V	12/16/2015 ser: G. Chan on: EUT only LTE Band 26 QPSK 3MHz BW sunol T899, and Chamber G Cable Sunol T899, and Chamber G Cable SG reading Ant. Pol. (dBm) (H/V) 10.68 V 10.62 V 0.62	12/16/2015 ser: G. Chan on: EUT only LTE Band 26 QPSK 3MHz BW sunol T899, and Chamber G Cable s: Dipole S/N: 00022117, 4ft SMA Cable (s/n 245182-003; SUCC SG reading Ant. Pol. (dBm) (H/V) 10.68 V 10.62 0.0 10.62 V	12/16/2015 ser: G. Chan on: EUT only LTE Band 26 QPSK 3MHz BW sunol T899, and Chamber G Cable sunol T899, and Chamber G Cable bill Dipole S/N: 00022117, 4ft SMA Cable (s/n 245182-003; SUCOFLEX 104PEA) SG reading (dBm) Ant. Pol. (H/V) Cable Loss (dB) Antenna Gain (dBi) ERP (dBm) 10.68 V 0.62 0.0 10.06 17.34 H 0.62 0.0 16.72 10.62 V 0.62 0.0 10.00	12/16/2015 ser: G. Chan on: EUT only LTE Band 26 QPSK 3MHz BW tell Tonly LTE Band 26 QPSK 3MHz BW sunol T899, and Chamber G Cable sunol T899, and Chamber G Cable toipole SIN: 00022117, 4ft SMA Cable (s/n 245182-003; SUCOFLEX 104PEA) SG reading (dBm) Antenna Gain (H/V) EIRP (dBm) (dBm) (dBm) 10.68 V 0.62 0.0 10.06 12.21 17.34 H 0.62 0.0 16.72 18.87 10.62 V 0.62 0.0 10.00 12.15	12/16/2015 ser: G. Chan On: EUT only LTE Band 26 QPSK 3MHz BW nent: Sunol T899, and Chamber G Cable 1: Dipole S/N: 00022117, 4ft SMA Cable (s/n 245182-003; SUCOFLEX 104PEA) SG reading Ant. Pol. (dB) (dB) (dBm) (dBm) (dBm) 10.68 V 0.62 0.0 10.06 12.21 38.45 17.34 H 0.62 0.0 16.72 18.87 38.45 10.62 V 0.62 0.0 10.00 12.15 38.45	12/16/2015 ser: G. Chan on: EUT only LTE Band 26 QPSK 3MHz BW nent: Sunol T899, and Chamber G Cable Sunol T899, and Chamber G Cable t: Dipole S/N: 00022117, 4ft SMA Cable (s/n 245182-003; SUCOFLEX 104PEA) SG reading (dBm) Antenna Gain (dBm) ERP Limit (dBm) ERP Limit (dBm) ERP Limit (dBm) Cable Loss (dBm) Antenna Gain (dBm) ERP Limit (dBm) ERP Limit (dBm) 10.68 V 0.62 0.0 10.06 12.21 38.45 40.60 17.34 H 0.62 0.0 16.72 18.87 38.45 40.60 10.62 V 0.62 0.0 10.00 12.15 38.45 40.60	12/16/2015 ser: G. Chan On: EUT only LTE Band 26 QPSK 3MHz BW theta 26 QPSK 3MHz BW Sunol T899, and Chamber G Cable Sunol T899, and Chamber G Cable t. Dipole SN: 00022117, 4ft SMA Cable (s/n 245182-003; SUCOFLEX 104PEA) SG reading (dBm) Antenna Gain (dBi) EIRP (dBm) EIRP Limit (dBm) Margin (dBm) Margin (dBm) Margin (dBm) Cable Loss (dBm) Antenna Gain (dBm) EIRP Limit (dBm) Margin (dBm) Cable Loss (dBm) Cable Loss (dBm)

Page 832 of 929

16QAM EIRP POWER FOR LTE BAND 26 (3.0MHZ BANDWIDTH)

	15U21635								
		60AM 3MHz BW							
n: Dipole S/N:	00022117, 4f	ft SMA Cable (s/ı	-	OFLEX 104PB ERP (dBm)	EA) EIRP (dBm)	ERP Limit (dBm)	EIRP Limit (dBm)	Margin (dB)	Notes
		0.00		0.01	11.10	00.15			
16.54	H	0.62	0.0	15.92	18.07	38.45	40.60	-22.5	
9.68	V	0.62	0.0	9.06	11.21	38.45	40.60	-29.4	
17.07	Н	0.62	0.0	16.45	18.60	38.45	40.60	-22.0	
	V	0.62	0.0	8.73	10.88	38.45	40.60	-29.7	
9.35	v	0.62	0.0	16.20	18.35	38.45	40.60	-22.3	
	eer: on: Sunol T899, a 1: Dipole S/N: SG reading (dBm) 9.93 16.54 9.68	EUT only LTE Band 26 10 nent: Sunol T899, and Chamber Sunol T899, and Chamber N: 00022117, 4f SG reading (dBm) Ant. Pol. (H/V) 9.93 V 16.54 H 9.68 V	Ser: G. Chan pn: EUT only LTE Band 26 16QAM 3MHz BW nent: Sunol T899, and Chamber G Cable Sunol T899, and Chamber G Cable Cable Loss (dBm) SG reading (dBm) Ant. Pol. (H/V) Cable Loss (dB) 9.93 V 0.62 16.54 H 0.62 9.68 V 0.62	Aper: G. Chan pn: EUT only LTE Band 26 16QAM 3MHz BW nent: Sunol T899, and Chamber G Cable b:: Dipole S/N: 00022117, 4ft SMA Cable (s/n 245182-003; SUC) SG reading (dBm) Ant. Pol. (H/V) Cable Loss Antenna Gain (dBi) 9.93 V 0.62 0.0 16.54 H 0.62 0.0 9.68 V 0.62 0.0	Aper: G. Chan pn: EUT only LTE Band 26 16QAM 3MHz BW nent: Sunol T899, and Chamber G Cable b:: Dipole S/N: 00022117, 4ft SMA Cable (s/n 245182-003; SUCOFLEX 104Pl SG reading (dBm) Ant. Pol. (H/V) Cable Loss (dB) Antenna Gain (dBi) ERP (dBm) 9.93 V 0.62 0.0 9.31 16.54 H 0.62 0.0 15.92 9.68 V 0.62 0.0 9.06	Aper: G. Chan pn: EUT only LTE Band 26 16QAM 3MHz BW Hent: Sunol T899, and Chamber G Cable b:: Dipole S/N: 00022117, 4ft SMA Cable (s/n 245182-003; SUCOFLEX 104PEA) SG reading (dBm) Ant. Pol. (H/V) Cable Loss (dB) Antenna Gain (dBi) ERP (dBm) EIRP (dBm) 9.93 V 0.62 0.0 9.31 11.46 16.54 H 0.62 0.0 15.92 18.07 9.68 V 0.62 0.0 9.06 11.21	Aper: G. Chan pn: EUT only LTE Band 26 16QAM 3MHz BW hent: Sunol T899, and Chamber G Cable b:: Dipole S/N: 00022117, 4ft SMA Cable (s/n 245182-003; SUCOFLEX 104PEA) SG reading (dBm) Ant. Pol. (H/V) Cable Loss (dB) Antenna Gain (dBi) ERP (dBm) ERP (dBm) ERP Limit (dBm) 9.93 V 0.62 0.0 9.31 11.46 38.45 16.54 H 0.62 0.0 15.92 18.07 38.45 9.68 V 0.62 0.0 9.06 11.21 38.45	Aper: G. Chan pn: EUT only LTE Band 26 16QAM 3MHz BW hent: Sunol T899, and Chamber G Cable b:: Dipole S/N: 00022117, 4ft SMA Cable (s/n 245182-003; SUCOFLEX 104PEA) SG reading (dBm) Ant. Pol. (H/V) Cable Loss (dB) Antenna Gain (dBi) ERP (dBm) EIRP Limit (dBm) EIRP Limit (dBm) 9.93 V 0.62 0.0 9.31 11.46 38.45 40.60 16.54 H 0.62 0.0 15.92 18.07 38.45 40.60 9.68 V 0.62 0.0 9.06 11.21 38.45 40.60	Summer: G. Chan EUT only LTE Band 26 16QAM 3MHz BW nent: Sunol T899, and Chamber G Cable b: Dipole S/N: 00022117, 4ft SMA Cable (s/n 245182-003; SUCOFLEX 104PEA) SG reading (dBm) Ant. Pol. (H/V) Cable Loss (dB) Antenna Gain (dBi) ERP (dBm) EIRP Limit (dBm) Margin (dBm) Margin (dBm) <t< th=""></t<>

Page 833 of 929

QPSK EIRP POWER FOR LTE BAND 26 (5.0MHZ BANDWIDTH)

ompany:										
roject #:		15U21635								
ate:		12/16/2015								
est Engi		G. Chan								
onfigura		EUT only								
ode:		LTE Band 26 Q	PSK 5MHz BW							
	j: Sunol T899, a			n 245182-003; SUC	OFLEX 104PE	EA)	ERP Limit	EIRP Limit	Margin	Notes
GHz	(dBm)	(H/V)	(dB)	(dBi)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	
Low Ch					• •					
816.50	10.46	V	0.62	0.0	9.84	11.99	38.45	40.60	-28.6	
040 60	17.30	Н	0.62	0.0	16.68	18.83	38.45	40.60	-21.8	
010.00										
			0.62	0.0	10.07	12.22	38.45	40.60	-28.4	
Aid Ch	10.69	V			17.36	19.51	38.45	40.60	-21.1	
Wid Ch 819.00	10.69 17.98	V H		0.0	17.30					
Mid Ch 819.00 819.00	10.69 17.98	V H	0.62	0.0	17.30	13.31				
Mid Ch 819.00 819.00 1igh Ch	17.98	Н	0.62							
816.50 Mid Ch 819.00 819.00 High Ch 821.50 821.50				0.0	9.40 17.14	11.55 19.29	38.45 38.45	40.60	-29.1 -21.3	

Page 834 of 929

16QAM EIRP POWER FOR LTE BAND 26 (5.0MHZ BANDWIDTH)

	ineer: ation:		6QAM 5MHz BW							
ate: est Eng onfigur: lode: <u>est Equ</u> eceivin	ineer: ation:	12/16/2015 G. Chan EUT only LTE Band 26 10	6QAM 5MHz BW							
est Eng onfigura lode: <u>est Equ</u> eceivin	ineer: ation:	G. Chan EUT only LTE Band 26 1	6QAM 5MHz BW							
onfigura ode: <u>est Equ</u> eceivin	ation:	EUT only LTE Band 26 1	6QAM 5MHz BW							
lode: <u>est Equ</u> eceivin		LTE Band 26 1	6QAM 5MHz BW							
est Equ eceivin			6QAM 5MHz BW							
eceivin	ipment:									
f	g: Sunol T899, a	: 00022117, 4		n 245182-003; SUC	OFLEX 104PE	A) EIRP	ERP Limit	EIRP Limit	Margin	Notes
GHz	(dBm)	(H/V)	(dB)	(dBi)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	
Low Ch										
816.50	9.60	V	0.62	0.0	8.98	11.13	38.45	40.60	-29.5	
816.50	16.50	H	0.62	0.0	15.88	18.03	38.45	40.60	-22.6	
Mid Ch										
819.00	9.46	v	0.62	0.0	8.84	10.99	38.45	40.60	-29.6	
	17.04	Н	0.62	0.0	16.42	18.57	38.45	40.60	-22.0	
		V	0.02	0.0	0.54	40.00	20.45	40.00	20.0	
819.00 High Ch 821.50 821.50 ev. 10.24.	9.16 16.91									

Page 835 of 929

QPSK EIRP POWER FOR LTE BAND 26 (10.0MHZ BANDWIDTH)

		UL Fre	emont Radiated	d Chamber G						
Company										
Project #:		15U21635								
Date:		12/16/2015								
Fest Engi		G. Chan								
Configura		EUT only								
/lode:		LTE Band 26 Q	PSK 10MHz BW							
f	SG reading	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	EIRP Limit (dBm)	Margin EIRP (dB)	Notes
GHz	(dBm)	(1.0.4)	(412)							
Mid Ch										
Mid Ch 819.00	10.91	v	0.62	0.0	10.29	12.44	38.45	40.60	-28.2	
Mid Ch 819.00	10.91	v	0.62							
Mid Ch 819.00 819.00	10.91 17.81			0.0 0.0	10.29 17.19	12.44 19.34	38.45 38.45	40.60 40.60	-28.2 -21.3	
Mid Ch 819.00 819.00	10.91 17.81	v	0.62							
Mid Ch 819.00 819.00	10.91 17.81	v	0.62							
Mid Ch 819.00 819.00	10.91 17.81	v	0.62							
Mid Ch 819.00 819.00	10.91 17.81	v	0.62							
Mid Ch 819.00 819.00	10.91 17.81	v	0.62							
Mid Ch 819.00 819.00	10.91 17.81	v	0.62							
Mid Ch 819.00 819.00	10.91 17.81	v	0.62							
Mid Ch 819.00 819.00	10.91 17.81	v	0.62							
Mid Ch 819.00 819.00	10.91 17.81	v	0.62							
Mid Ch 819.00	10.91 17.81	v	0.62							

Page 836 of 929

16QAM EIRP POWER FOR LTE BAND 26 (10.0MHZ BANDWIDTH)

mpany	r									
oject #		15U21635								
ate:		12/16/2015								
		G. Chan								
onfigur		EUT only								
de:		LTE Band 26 16	6QAM 10MHz BW							
f	tion: Dipole S/N SG reading (dBm)		t SMA Cable (s/i Cable Loss (dB)	n 245182-003; SUCC Antenna Gain (dBi)	DFLEX 104PEA) ERP (dBm)	EIRP (dBm)	ERP Limit (dBm)	EIRP Limit (dBm)	Margin (dB)	Notes
GHz Mid Ch		(H/V)	(ub)	(UDI)	(ubiii)	(ubiii)	(ubiii)	(ubiii)	(ub)	
19.00	10.12	V	0.62	0.0	9.50	11.65	38.45	40.60	-29.0	
	16.95	Н	0.62	0.0	16.33	18.48	38.45	40.60	-22.1	
9.00	10.33									
819.00 v. 10.24										

Page 837 of 929

9.2.9. LTE BAND 41

QPSK EIRP POWER FOR LTE BAND 41 (5.0MHZ BANDWIDTH)

Company								
Project #:		15U21635						
Date:		12/21/2015						
lest Engi	neer:	T Wang						
Configura	tion:	EUT only						
Node:		-	PSK 5MHz BW					
				s/n 245182-003; SUC			Manula FIDD	Natas
f GHz	on: Horn T59 S SG reading (dBm)	Ant. Pol. (H/V)	4ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	A) Limit (dBm)	Margin EIRP (dB)	Notes
f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit		Notes
f GHz Low Ch 2.499	SG reading (dBm) 16.6	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 9.33	EIRP (dBm) 24.73	Limit (dBm) 33.0	(dB) -8.3	Notes
f GHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 2.499	SG reading (dBm) 16.6	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 9.33	EIRP (dBm) 24.73	Limit (dBm) 33.0	(dB) -8.3	Notes
f GHz Low Ch 2.499 2.499	SG reading (dBm) 16.6	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 9.33	EIRP (dBm) 24.73	Limit (dBm) 33.0	(dB) -8.3	Notes
f GHz Low Ch 2.499 2.499 Mid Ch	SG reading (dBm) 16.6 17.4	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.33 9.33	EIRP (dBm) 24.73 25.58	Limit (dBm) 33.0 33.0	(dB) -8.3 -7.4	Notes
f GHz Low Ch 2.499 2.499 Mid Ch 2.593 2.593	SG reading (dBm) 16.6 17.4 16.6	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.33 9.33 9.47	EIRP (dBm) 24.73 25.58 24.94	Limit (dBm) 33.0 33.0 33.0	(dB) -8.3 -7.4 -8.1	Notes
f GHz Low Ch 2.499 2.499 Mid Ch 2.593	SG reading (dBm) 16.6 17.4 16.6	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.33 9.33 9.47	EIRP (dBm) 24.73 25.58 24.94	Limit (dBm) 33.0 33.0 33.0	(dB) -8.3 -7.4 -8.1	Notes

Page 838 of 929

16QAM EIRP POWER FOR LTE BAND 41 (5.0MHZ BANDWIDTH)

ompany:								
roject #:		15U21635						
ate:		12/21/2015						
est Engi	neer:	T Wang						
onfigura		EUT only						
lode:			6QAM 5MHz BW					
	on. Horn 159 3	ubstitution, ·		/n 245182-003; SUC	OFLEX 104FE	·^)		
f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
f GHz						-	Margin EIRP (dB)	Notes
f GHz	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit		Notes
f GHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 2.499 2.499	SG reading (dBm) 15.6	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 9.33	EIRP (dBm) 23.81	Limit (dBm) 33.0	(dB) -9.2	Notes
f GHz Low Ch 2.499 2.499 Mid Ch	SG reading (dBm) 15.6 16.5	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.33 9.33	EIRP (dBm) 23.81 24.64	Limit (dBm) 33.0 33.0	(dB) -9.2 -8.4	Notes
f GHz Low Ch 2.499 2.499 Mid Ch 2.593	SG reading (dBm) 15.6 16.5 15.8	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.33 9.33 9.47	EIRP (dBm) 23.81 24.64 24.14	Limit (dBm) 33.0 33.0 33.0	(dB) -9.2 -8.4 -8.9	Notes
f GHz Low Ch 2.499 2.499 Mid Ch	SG reading (dBm) 15.6 16.5	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.33 9.33	EIRP (dBm) 23.81 24.64	Limit (dBm) 33.0 33.0	(dB) -9.2 -8.4	Notes
f GHz Low Ch 2.499 2.499 Mid Ch 2.593	SG reading (dBm) 15.6 16.5 15.8	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.33 9.33 9.47	EIRP (dBm) 23.81 24.64 24.14	Limit (dBm) 33.0 33.0 33.0	(dB) -9.2 -8.4 -8.9	Notes
f GHz Low Ch 2.499 2.499 Mid Ch 2.593 2.593	SG reading (dBm) 15.6 16.5 15.8	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.33 9.33 9.47	EIRP (dBm) 23.81 24.64 24.14	Limit (dBm) 33.0 33.0 33.0	(dB) -9.2 -8.4 -8.9	Notes

Page 839 of 929

QPSK EIRP POWER FOR LTE BAND 41 (10.0MHZ BANDWIDTH)

ompany								
roject #:		15U21635						
ate:		12/21/2015						
est Engi	neer:	T Wang						
onfigura		EUT only						
lode:		-	PSK 10MHz BW IC	2				
assilut	on: Horn T59 S	Substitution, 4	AIT SIMA CADIE (S	11 245 102-005, 500		.~)		
f GHz	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	Margin EIRP (dB)	Notes
f						-	Margin EIRP (dB)	Notes
f GHz	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	_	Notes
f GHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 2.505 2.505	SG reading (dBm) 16.4	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 9.34	EIRP (dBm) 24.60	Limit (dBm) 33.0	(dB) -8.4	Notes
f GHz 2.505 2.505 Mid Ch	SG reading (dBm) 16.4 17.7	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.34 9.34	EIRP (dBm) 24.60 25.86	Limit (dBm) 33.0 33.0	(dB) -8.4 -7.1	Notes
f GHz Low Ch 2.505 2.505	SG reading (dBm) 16.4	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 9.34	EIRP (dBm) 24.60	Limit (dBm) 33.0 33.0 33.0	(dB) -8.4	Notes
f GHz 2.505 2.505 Mid Ch 2.595	SG reading (dBm) 16.4 17.7 17.0	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.34 9.34 9.47	EIRP (dBm) 24.60 25.86 25.35	Limit (dBm) 33.0 33.0	(dB) -8.4 -7.1 -7.6	Notes
f GHz 2.505 2.505 Mid Ch 2.595 2.595 High Ch	SG reading (dBm) 16.4 17.7 17.0 17.1	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.16 1.16	Antenna Gain (dBi) 9.34 9.34 9.34 9.47 9.47	EIRP (dBm) 24.60 25.86 25.35 25.39	Limit (dBm) 33.0 33.0 33.0 33.0	(dB) -8.4 -7.1 -7.6 -7.6	Notes
f GHz Low Ch 2.505 2.505 Mid Ch 2.595 2.595	SG reading (dBm) 16.4 17.7 17.0	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.34 9.34 9.47	EIRP (dBm) 24.60 25.86 25.35	Limit (dBm) 33.0 33.0 33.0	(dB) -8.4 -7.1 -7.6	Notes

Page 840 of 929

16QAM EIRP POWER FOR LTE BAND 41 (10.0MHZ BANDWIDTH)

ompany:								
roject #:		15U21635						
ate:		12/21/2015						
est Engi	neer:	T Wang						
onfigura		EUT only						
lode:			6QAM 10MHz BW					
ubstituti	on: Horn T59 S	ubstitution, 4	4ft SMA Cable (s	/n 245182-003; SUC	OFLEX 104PE	A)		
f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
f GHz							Margin EIRP (dB)	Notes
f GHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	-	Notes
f GHz Low Ch 2.501 2.501	SG reading (dBm) 15.7	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 9.33	EIRP (dBm) 23.90	Limit (dBm) 33.0	(dB) -9.1	Notes
f GHz 2.501 2.501 Mid Ch	SG reading (dBm) 15.7 16.5	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.33 9.33	EIRP (dBm) 23.90 24.71	Limit (dBm) 33.0 33.0	(dB) -9.1 -8.3	Notes
f GHz Low Ch 2.501 2.501 Mid Ch 2.593	SG reading (dBm) 15.7 16.5 16.0	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.33 9.33 9.47	EIRP (dBm) 23.90 24.71 24.34	Limit (dBm) 33.0 33.0 33.0	(dB) -9.1 -8.3 -8.7	Notes
f GHz 2.501 2.501 Mid Ch	SG reading (dBm) 15.7 16.5	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.33 9.33	EIRP (dBm) 23.90 24.71	Limit (dBm) 33.0 33.0	(dB) -9.1 -8.3	Notes
f GHz Low Ch 2.501 2.501 Mid Ch 2.593	SG reading (dBm) 15.7 16.5 16.0	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.33 9.33 9.47	EIRP (dBm) 23.90 24.71 24.34	Limit (dBm) 33.0 33.0 33.0	(dB) -9.1 -8.3 -8.7	Notes
f GHz Low Ch 2.501 2.501 Mid Ch 2.593 2.593	SG reading (dBm) 15.7 16.5 16.0	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.33 9.33 9.47	EIRP (dBm) 23.90 24.71 24.34	Limit (dBm) 33.0 33.0 33.0	(dB) -9.1 -8.3 -8.7	Notes

Page 841 of 929

QPSK EIRP POWER FOR LTE BAND 41 (15.0MHZ BANDWIDTH)

Company								
Project #:		15U21635						
Date:		12/21/2015						
lest Engi	neer:	T Wang						
Configura		EUT only						
/lode:			PSK 15MHz BW					
			•	/n 245182-003; SUC				
f GHz	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit	Margin EIRP (dB)	Notes
-	-			Antenna Gain	EIRP	Limit (dBm)	_	Notes
GHz	-			Antenna Gain	EIRP		_	Notes
GHz Low Ch	(dBm)	(H/V)	(dB)	Antenna Gain (dBi)	EIRP (dBm)	(dBm)	(dB)	Notes
GHz Low Ch 2.504 2.504	(dBm) 16.8	(H/V) V	(dB)	Antenna Gain (dBi) 9.34	EIRP (dBm) 25.00	(dBm) 33.0	(dB) -8.0	Notes
GHz Low Ch 2.504 2.504 Mid Ch	(dBm) 16.8 17.1	(H/V) V H	(dB) 1.15 1.15	Antenna Gain (dBi) 9.34 9.34	EIRP (dBm) 25.00 25.29	(dBm) 33.0 33.0	(dB) -8.0 -7.7	Notes
GHz Low Ch 2.504 2.504	(dBm) 16.8	(H/V) V	(dB)	Antenna Gain (dBi) 9.34	EIRP (dBm) 25.00	(dBm) 33.0	(dB) -8.0	Notes
GHz Low Ch 2.504 2.504 Mid Ch 2.593 2.593	(dBm) 16.8 17.1 16.7	(H/V) V H	(dB)	Antenna Gain (dBi) 9.34 9.34 9.47	EIRP (dBm) 25.00 25.29 25.04	(dBm) 33.0 33.0 33.0	(dB) -8.0 -7.7 -8.0	Notes
GHz Low Ch 2.504 2.504 Mid Ch 2.593 2.593 High Ch	(dBm) 16.8 17.1 16.7 17.1	(H/V) V H	(dB) 1.15 1.15 1.16 1.16	Antenna Gain (dBi) 9.34 9.34 9.34 9.47 9.47	EIRP (dBm) 25.00 25.29 25.04 25.43	(dBm) 33.0 33.0 33.0 33.0 33.0	(dB) -8.0 -7.7 -8.0 -7.6	Notes
GHz Low Ch 2.504 2.504 Mid Ch 2.593 2.593	(dBm) 16.8 17.1 16.7	(H/V) V H	(dB)	Antenna Gain (dBi) 9.34 9.34 9.47	EIRP (dBm) 25.00 25.29 25.04	(dBm) 33.0 33.0 33.0	(dB) -8.0 -7.7 -8.0	Notes

Page 842 of 929

16QAM EIRP POWER FOR LTE BAND 41 (15.0MHZ BANDWIDTH)

ompany								
roject #:		15U21635						
ate:		12/21/2015						
est Engi	neer:	T Wang						
onfigura		EUT only						
lode:		-	6QAM 15MHz BW					
abstitut	on: Horn 159 S	Substitution, 4	ATT SIVIA Cable (S	/n 245182-003; SUC	OFLEX 104PE	.~)		
f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
f GHz						-	Margin EIRP (dB)	Notes
f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit		Notes
f GHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 2.504 2.504	SG reading (dBm) 16.0	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi) 9.34	EIRP (dBm) 24.14	Limit (dBm) 33.0	(dB) -8.9	Notes
f GHz 2.504 2.504 Mid Ch	SG reading (dBm) 16.0 16.1	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.34 9.34	EIRP (dBm) 24.14 24.27	Limit (dBm) 33.0 33.0	(dB) -8.9 -8.7	Notes
f GHz 2.504 2.504 Mid Ch 2.593	SG reading (dBm) 16.0 16.1 15.8	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.34 9.34 9.47	EIRP (dBm) 24.14 24.27 24.10	Limit (dBm) 33.0 33.0 33.0	(dB) -8.9 -8.7 -8.9	Notes
f GHz 2.504 2.504 Mid Ch	SG reading (dBm) 16.0 16.1	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.34 9.34	EIRP (dBm) 24.14 24.27	Limit (dBm) 33.0 33.0	(dB) -8.9 -8.7	Notes
f GHz 2.504 2.504 Mid Ch 2.593	SG reading (dBm) 16.0 16.1 15.8	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.16 1.16	Antenna Gain (dBi) 9.34 9.34 9.34 9.47 9.47	EIRP (dBm) 24.14 24.27 24.10 24.42	Limit (dBm) 33.0 33.0 33.0	(dB) -8.9 -8.7 -8.9	Notes
f GHz Low Ch 2.504 2.504 Mid Ch 2.593 2.593	SG reading (dBm) 16.0 16.1 15.8	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.34 9.34 9.47	EIRP (dBm) 24.14 24.27 24.10	Limit (dBm) 33.0 33.0 33.0	(dB) -8.9 -8.7 -8.9	Notes

Page 843 of 929

QPSK EIRP POWER FOR LTE BAND 41 (20.0MHZ BANDWIDTH)

ompany:								
roject #:		15U21635						
ate:		12/21/2015						
est Engi	neer:	T Wang						
onfigura		EUT only						
ode:			PSK 20MHz BW					
assuruu	on: Horn 159 S	Substitution, 4	ATT SIVIA Cable (S	/n 245182-003; SUC	OFLEX 104FE	·~)		
f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	Margin EIRP	Notes
f GHz						-	Margin EIRP (dB)	Notes
f GHz	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit		Notes
f GHz Low Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 2.506 2.506	SG reading (dBm) 16.7	Ant. Pol. (H/V) V	Cable Loss (dB)	Antenna Gain (dBi) 9.34	EIRP (dBm) 24.90	Limit (dBm) 33.0	(dB) -8.1	Notes
f GHz Low Ch 2.506 2.506 Mid Ch	SG reading (dBm) 16.7 17.6	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.34 9.34	EIRP (dBm) 24.90 25.75	Limit (dBm) 33.0 33.0	(dB) -8.1 -7.2	Notes
f GHz 2.506 2.506 Mid Ch 2.593	SG reading (dBm) 16.7 17.6 16.7	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.34 9.34 9.47	EIRP (dBm) 24.90 25.75 25.02	Limit (dBm) 33.0 33.0 33.0	(dB) -8.1 -7.2 -8.0	Notes
f GHz 2.506 2.506 Mid Ch	SG reading (dBm) 16.7 17.6	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.34 9.34	EIRP (dBm) 24.90 25.75	Limit (dBm) 33.0 33.0	(dB) -8.1 -7.2	Notes
f GHz 2.506 2.506 Mid Ch 2.593	SG reading (dBm) 16.7 17.6 16.7	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.34 9.34 9.47	EIRP (dBm) 24.90 25.75 25.02	Limit (dBm) 33.0 33.0 33.0	(dB) -8.1 -7.2 -8.0	Notes
f GHz Low Ch 2.506 2.506 Mid Ch 2.593 2.593	SG reading (dBm) 16.7 17.6 16.7	Ant. Pol. (H/V) V H	Cable Loss (dB) 1.15 1.15 1.15	Antenna Gain (dBi) 9.34 9.34 9.47	EIRP (dBm) 24.90 25.75 25.02	Limit (dBm) 33.0 33.0 33.0	(dB) -8.1 -7.2 -8.0	Notes

Page 844 of 929

16QAM EIRP POWER FOR LTE BAND 41 (20.0MHZ BANDWIDTH)

ompany:								
roject #:		15U21635						
ate:		12/21/2015						
est Engi		T Wang						
onfigura		EUT only						
lode:			QAM 20MHz BW					
			G SMA Cables 4ft SMA Cable (s	/n 245182-003; SUC	OFLEX 104PE	A)		
ubstituti f	on: Horn T59 S	Ant. Pol.	ft SMA Cable (s	Antenna Gain	EIRP	Limit	Margin EIRP (dB)	Notes
ubstituti	on: Horn T59 S	ubstitution, 4	ft SMA Cable (s				Margin EIRP (dB)	Notes
f GHz	on: Horn T59 S	Ant. Pol.	ft SMA Cable (s	Antenna Gain	EIRP	Limit		Notes
ubstituti f GHz Low Ch	on: Horn T59 S SG reading (dBm)	Ant. Pol. (H/V)	ft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Notes
f GHz Low Ch 2.506 2.506	on: Horn T59 S SG reading (dBm) 15.7	Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi) 9.34	EIRP (dBm) 23.84	Limit (dBm) 33.0	(dB) -9.2	Notes
f GHz Low Ch 2.506 2.506 Mid Ch	on: Horn T59 S SG reading (dBm) 15.7 16.7	Ant. Pol. (H/V) V H	tft SMA Cable (s Cable Loss (dB) 1.15 1.15	Antenna Gain (dBi) 9.34 9.34	EIRP (dBm) 23.84 24.85	Limit (dBm) 33.0 33.0	(dB) -9.2 -8.1	Notes
f GHz Low Ch 2.506 2.506	on: Horn T59 S SG reading (dBm) 15.7	Ant. Pol. (H/V)	fft SMA Cable (s Cable Loss (dB)	Antenna Gain (dBi) 9.34	EIRP (dBm) 23.84	Limit (dBm) 33.0	(dB) -9.2	Notes
f GHz Low Ch 2.506 2.506 Mid Ch 2.593 2.593	on: Horn T59 S SG reading (dBm) 15.7 16.7 15.8	Ant. Pol. (H/V) V H	tft SMA Cable (s Cable Loss (dB) 1.15 1.15 1.16	Antenna Gain (dBi) 9.34 9.34 9.47	EIRP (dBm) 23.84 24.85 24.14	Limit (dBm) 33.0 33.0 33.0	(dB) -9.2 -8.1 -8.9	Notes
f GHz Low Ch 2.506 2.506 Mid Ch 2.593	on: Horn T59 S SG reading (dBm) 15.7 16.7 15.8	Ant. Pol. (H/V) V H	tft SMA Cable (s Cable Loss (dB) 1.15 1.15 1.16	Antenna Gain (dBi) 9.34 9.34 9.47	EIRP (dBm) 23.84 24.85 24.14	Limit (dBm) 33.0 33.0 33.0	(dB) -9.2 -8.1 -8.9	Notes
f GHz Low Ch 2.506 2.506 Mid Ch 2.593 2.593	on: Horn T59 S SG reading (dBm) 15.7 16.7 15.8	Ant. Pol. (H/V) V H	tft SMA Cable (s Cable Loss (dB) 1.15 1.15 1.16	Antenna Gain (dBi) 9.34 9.34 9.47	EIRP (dBm) 23.84 24.85 24.14	Limit (dBm) 33.0 33.0 33.0	(dB) -9.2 -8.1 -8.9	Note

Page 845 of 929

9.3. PEAK-TO-AVERAGE RATIO

In addition, when the transmitter power is measured in terms of average value, the peak-to-average ratio of the power shall not exceed 13 dB $\,$

9.3.1. LTE BAND 2

	Channel Band-width				Power (dBm)	Peak-to- Average Ratio
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)
LTE Band 2	1.4	1880.0	QPSK	26.71	21.91	4.80
RB1-0	1.4	1880.0	16QAM	26.92	21.14	5.78

*Peak Reading = Average Reading + Peak-to-Average Ratio

Mode	Channel Band-width (MHZ)	f (MHz)	Modulation	Conducted *Peak	Power (dBm) Average	Peak-to- Average Ratio (PAR)
IVIOUE			woouation	reak	Average	(FAR)
LTE Band 2	3.0	1880.0	QPSK	26.79	21.99	4.80
RB1-0	3.0	1880.0	16QAM	26.74	21.12	5.62

*Peak Reading = Average Reading + Peak-to-Average Ratio

	Channel Band-width			Conducted	Power (dBm)	Peak-to- Average Ratio
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)
LTE Band 2	5.0	1880.0	QPSK	26.64	21.84	4.80
RB1-0	5.0	1880.0	16QAM	26.32	20.77	5.55

*Peak Reading = Average Reading + Peak-to-Average Ratio

	Channel Band-width			Conducted	Power (dBm)	Peak-to- Average Ratio
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)
LTE Band 2	10.0	1880.0	QPSK	26.65	22	4.65
RB1-0	10.0	1880.0	16QAM	26.48	21.01	5.47
*Peak Readin	g = Average Re	eading + Pe	eak-to-Average	Ratio		

	Channel Band-width			Conducted	Power (dBm)	Peak-to- Average Ratio
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)
LTE Band 2	15.0	1990.0	QPSK	26.6	21.95	4.65
RB1-0	15.0	1880.0	16QAM	26.53	21.06	5.47
*Peak Readin	g = Average Re	eading + Pe	eak-to-Average	Ratio		

	Channel Band-width			Conducted	Power (dBm)	Peak-to- Average Ratio
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)
LTE Band 2	20.0	1880.0	QPSK	26.79	21.99	4.8
RB1-0	20.0	1880.0	16QAM	26.69	21.07	5.62
*Peak Readin	g = Average Ro	eading + Pe	eak-to-Average	Ratio		

9.3.2. LTE BAND 4

	Channel Band-width			Conducted	Power (dBm)	Peak-to- Average Ratio
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)
LTE Band 4	4.4	1700 F	QPSK	27.71	22.84	4.87
RB1-0	1.4	1732.5	16QAM	27.69	21.99	5.70

*Peak Reading = Average Reading + Peak-to-Average Ratio

	Channel Band-width			Conducted	Power (dBm)	Peak-to- Average Ratio			
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)			
LTE Band 4 RB1-0 3.0	2.0	1720 5	QPSK	27.78	22.98	4.8			
	3.0	1732.5	16QAM	26.84	21.97	4.87			
*Peak Readin	*Peak Reading = Average Reading + Peak-to-Average Ratio								

Page 847 of 929

REPORT NO: 15U21635-E9V3 EUT MODELS: A1723, A1724

	Channel Band-width			Conducted Power (dBm)		Peak-to- Average Ratio		
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)		
LTE Band 4 RB1-0 5.0	1720 5	QPSK	27.67	22.87	4.8			
	5.0	1732.5	16QAM	26.35	21.7	4.65		
*Peak Reading = Average Reading + Peak-to-Average Ratio								

Channel Peak-to-Conducted Power (dBm) Band-width Average Ratio Mode (MHZ) f (MHz) Modulation *Peak Average (PAR) QPSK 27.71 22.99 4.72 LTE Band 4 10.0 1732.5 RB1-0 16QAM 27.79 22.24 5.55 *Peak Reading = Average Reading + Peak-to-Average Ratio

	Channel Band-width			Conducted	Power (dBm)	Peak-to- Average Ratio			
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)			
LTE Band 4 RB1-0 15.0	15.0	1732.5	QPSK	27.68	22.96	4.72			
	15.0	1732.5	16QAM	27.83	22.28	5.55			
*Peak Readin	*Peak Reading = Average Reading + Peak-to-Average Ratio								

	Channel Band-width			Conducted	Power (dBm)	Peak-to- Average Ratio			
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)			
LTE Band 4 RB1-0 20.0	20.0	1732.5	QPSK	27.72	23	4.72			
	20.0	1732.5	16QAM	27.78	22.16	5.62			
*Peak Readin	*Peak Reading = Average Reading + Peak-to-Average Ratio								

Page 848 of 929

9.3.3. LTE BAND 5

	Channel Band-width			Conducted	Power (dBm)	Peak-to- Average Ratio	
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)	
LTE Band 5 RB1-0 1.4	000 5	QPSK	28.86	23.99	4.87		
	1.4	1.4 836.5	16QAM	28.87	23.09	5.78	

*Peak Reading = Average Reading + Peak-to-Average Ratio

	Channel Band-width			Conducted	Peak-to- Average Ratio			
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)		
LTE Band 5 RB1-0 3.0	836.5	QPSK	28.87	24	4.87			
	3.0	836.5	16QAM	28.63	23.01	5.62		
*Peak Reading = Average Reading + Peak-to-Average Ratio								

	Channel Band-width			Conducted	Power (dBm)	Peak-to- Average Ratio
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)
LTE Band 5	5.0	836.5	QPSK	28.76	23.89	4.87
RB1-0	5.0	836.5	16QAM	28.33	22.71	5.62

*Peak Reading = Average Reading + Peak-to-Average Ratio

	Channel Band-width			Conducted	Power (dBm)	Peak-to- Average Ratio		
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)		
LTE Band 5 RB1-0 10.0	836.5	QPSK	28.68	23.96	4.72			
	10.0	030.5	16QAM	28.5	23.03	5.47		
*Peak Reading = Average Reading + Peak-to-Average Ratio								

Page 849 of 929

9.3.4. LTE BAND 12

	Channel Band-width			Conducted	Power (dBm)	Peak-to- Average Ratio	
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)	
LTE Band 12 RB1-0 1.4	707 5	QPSK	28.98	23.95	5.03		
	1.4	707.5	16QAM	29.22	23.14	6.08	
*Deak Booding - Average Booding - Deak to Average Batia							

*Peak Reading = Average Reading + Peak-to-Average Ratio

	Channel Band-width			Conducted	Power (dBm)	Peak-to- Average Ratio		
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)		
LTE Band 12 RB1-0 3.0	707.5	QPSK	28.99	23.96	5.03			
	3.0	707.5	16QAM	28.86	23.01	5.85		
*Peak Reading = Average Reading + Peak-to-Average Ratio								

	Channel Band-width			Conducted	Power (dBm)	Peak-to- Average Ratio
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)
LTE Band 12 RB1-0 5.0	707 5	QPSK	28.89	23.86	5.03	
	5.0	707.5	16QAM	28.51	22.73	5.78

*Peak Reading = Average Reading + Peak-to-Average Ratio

	Channel Band-width			Conducted	Power (dBm)	Peak-to- Average Ratio			
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)			
LTE Band 12 RB1-0 10.0	707.5	QPSK	28.79	23.99	4.80				
	10.0	707.5	16QAM	28.77	23.07	5.70			
*Peak Reading	*Peak Reading = Average Reading + Peak-to-Average Ratio								

Page 850 of 929

9.3.5. LTE BAND 17

	Channel Band-width			Conducted	Power (dBm)	Peak-to- Average Ratio		
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)		
LTE Band 17	5.0	740.0	QPSK	28.54	23.96	4.58		
RB1-0 5.0	710.0	16QAM	28.53	23.06	5.47			
*Dook Dooding	*Peak Peading - Average Peading + Peak-te-Average Patie							

*Peak Reading = Average Reading + Peak-to-Average Ratio

	Channel Band-width			Conducted	Power (dBm)	Peak-to- Average Ratio		
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)		
LTE Band 17	10.0	710.0	QPSK	28.65	23.93	4.72		
RB1-0 10.0	10.0	710.0	16QAM	28.67	22.97	5.70		
*Peak Reading	*Peak Reading = Average Reading + Peak-to-Average Ratio							

Page 851 of 929

9.3.6. LTE BAND 25

	Channel Band-width			Conducted	Power (dBm)	Peak-to- Average Ratio
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)
LTE Band 25	1.4	1992 E	QPSK	26.87	21.92	4.95
RB1-0	1.4	1882.5	16QAM	26.7	20.92	5.78
						•

*Peak Reading = Average Reading + Peak-to-Average Ratio

	Channel Band-width			Conducted	Power (dBm)	Peak-to- Average Ratio
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)
LTE Band 25	3.0	1882.5	QPSK	26.83	21.96	4.87
RB1-0	3.0	1882.5	16QAM	26.75	21.05	5.70
*De als De alians - De alians - De alians - De alians						

*Peak Reading = Average Reading + Peak-to-Average Ratio

Mode	Channel Band-width (MHZ)	f (MHz)	Modulation	Conducted *Peak	Power (dBm) Average	Peak-to- Average Ratio (PAR)
LTE Band 25	5.0	1882.5	QPSK	26.67	21.80	4.87
RB1-0	5.0	1002.5	16QAM	26.41	20.71	5.70

*Peak Reading = Average Reading + Peak-to-Average Ratio

	Channel Band-width			Conducted	Power (dBm)	Peak-to- Average Ratio		
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)		
LTE Band 25	10.0	1992 5	QPSK	26.6	21.88	4.72		
RB1-0 10.0	1882.5	16QAM	26.53	20.98	5.55			
*Peak Reading	*Peak Reading = Average Reading + Peak-to-Average Ratio							

Page 852 of 929

	Channel Band-width			Conducted	Power (dBm)	Peak-to- Average Ratio		
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)		
LTE Band 25	15.0	4000 F	QPSK	26.52	21.80	4.72		
RB1-0 15.0	1882.5	16QAM	26.48	21.01	5.47			
*Peak Reading	*Peak Reading = Average Reading + Peak-to-Average Ratio							

Average Reading + Peak-to-Average Ratio keading

	Channel Band-width			Conducted	Power (dBm)	Peak-to- Average Ratio		
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)		
LTE Band 25	20.0	1992 5	QPSK	26.44	21.64	4.80		
RB1-0 20.0	20.0	1882.5	16QAM	26.29	20.74	5.55		
*Peak Reading	*Peak Reading = Average Reading + Peak-to-Average Ratio							

Page 853 of 929

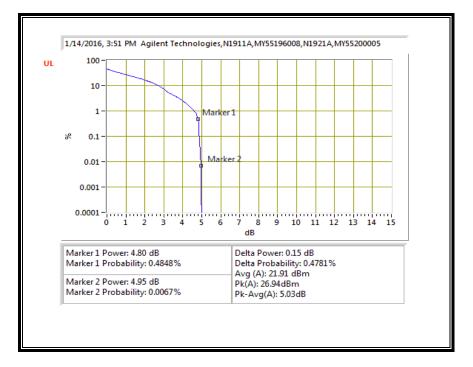
9.3.7. LTE BAND 26

	Channel Band-width			Conducted	Power (dBm)	Peak-to- Average Ratio	
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)	
LTE Band 26		010.0	QPSK	28.71	23.84	4.87	
RB1-0 1.4	819.0	16QAM	28.7	23.00	5.70		
*Peak Reading = Average Reading + Peak-to-Average Ratio							

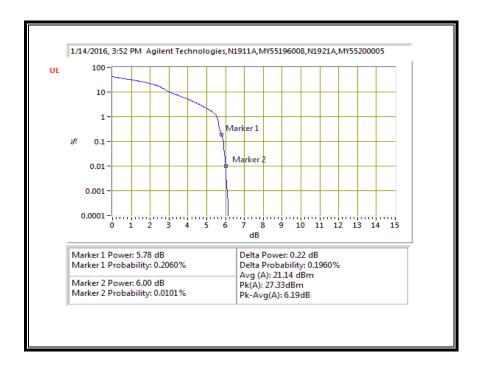
	PAR)
LTE Band 26 3.0 819.0 QPSK 28.82 23.95 4	4.87
RB1-0	5.62

*Peak Reading = Average Reading + Peak-to-Average Ratio

	Channel Band-width			Conducted	Power (dBm)	Peak-to- Average Ratio		
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)		
LTE Band 26	5.0	810.0	QPSK	28.67	23.87	4.80		
RB1-0 5.0	819.0	16QAM	28.24	22.69	5.55			
*Peak Reading	*Peak Reading = Average Reading + Peak-to-Average Ratio							


Peak Reading = Average Reading + Peak-to-Average Ratio

	Channel Band-width			Conducted	Power (dBm)	Peak-to- Average Ratio			
Mode	(MHZ)	f (MHz)	Modulation	*Peak	Average	(PAR)			
LTE Band 26	10.0	810.0	QPSK	28.63	23.98	4.65			
RB1-0 10.0	10.0	819.0	16QAM	28.42	23.02	5.40			
*Peak Reading	j = Average Re	*Peak Reading = Average Reading + Peak-to-Average Ratio							

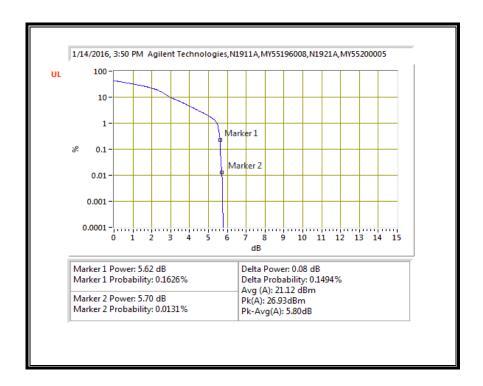

Page 854 of 929

LTE BAND 2

QPSK, (1.4 MHz BAND WIDTH)

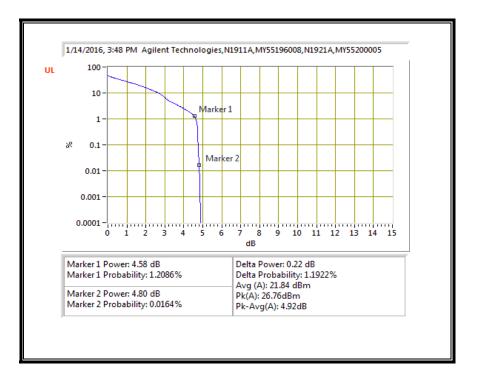


16QAM, (1.4 MHz BAND WIDTH)

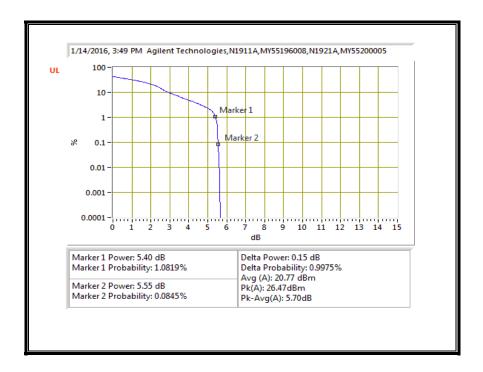


Page 855 of 929

QPSK, (3.0 MHz BAND WIDTH)

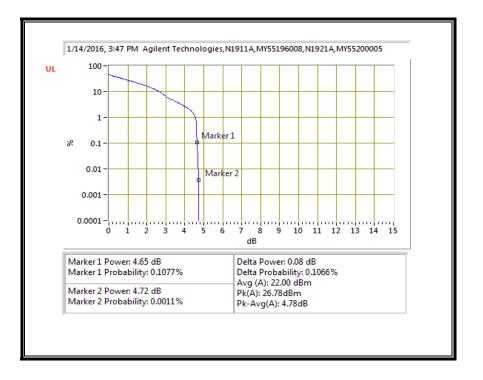


16QAM, (3.0 MHz BAND WIDTH)

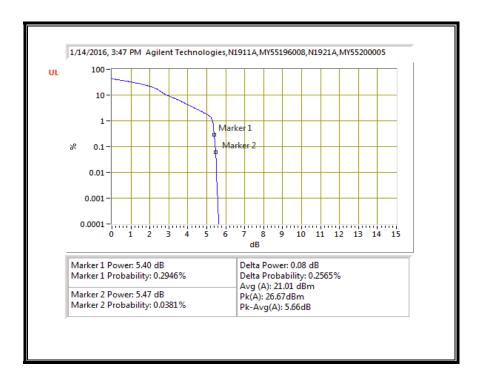


Page 856 of 929

QPSK, (5.0 MHz BAND WIDTH)

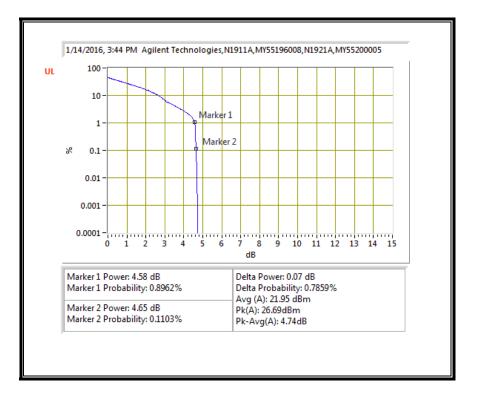


16QAM, (5.0 MHz BAND WIDTH)

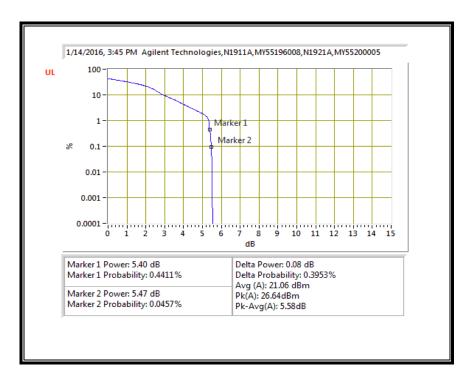


Page 857 of 929

QPSK, (10.0 MHz BAND WIDTH)

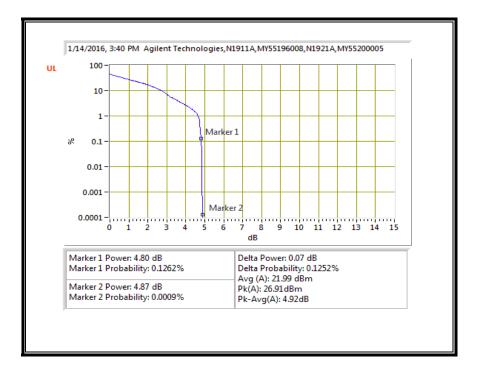


16QAM, (10.0 MHz BAND WIDTH)

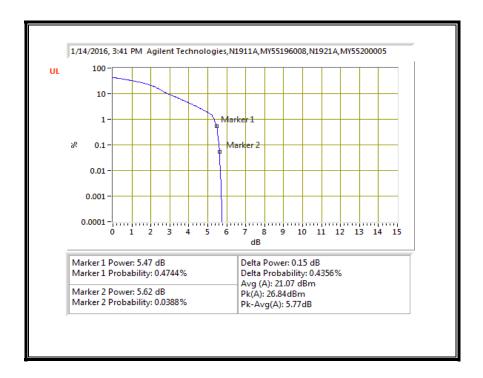


Page 858 of 929

QPSK, (15.0 MHz BAND WIDTH)

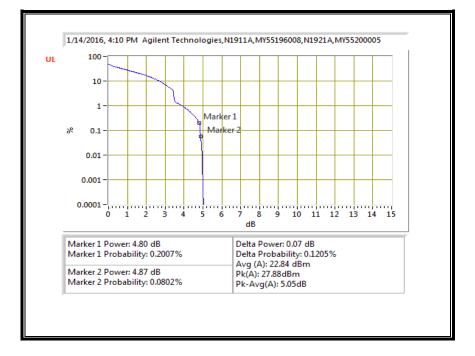


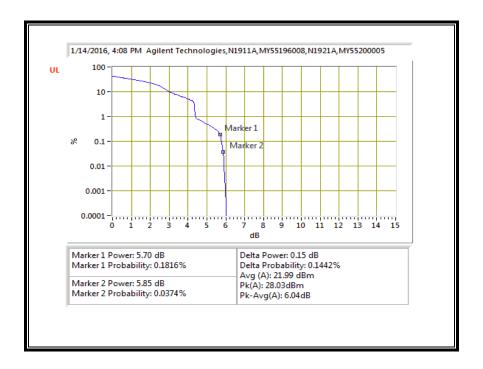
16QAM, (15.0 MHz BAND WIDTH)



Page 859 of 929

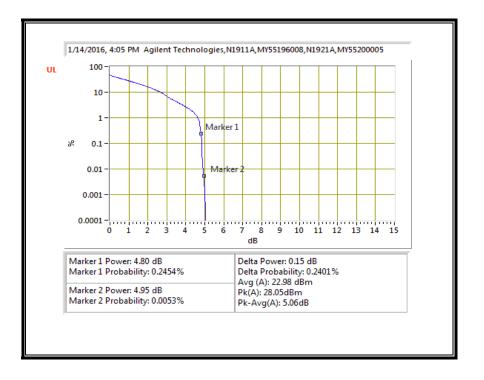
QPSK, (20.0 MHz BAND WIDTH)


16QAM, (20.0 MHz BAND WIDTH)

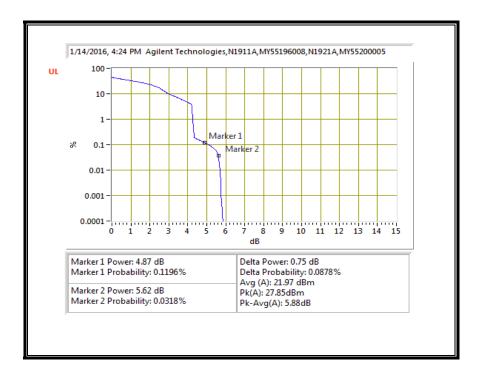

Page 860 of 929

LTE BAND 4

QPSK, (1.4 MHz BAND WIDTH)

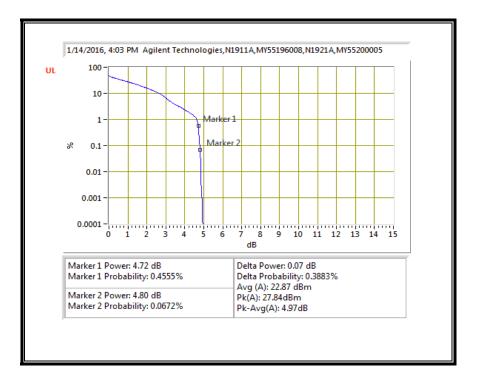


16QAM, (1.4 MHz BAND WIDTH)

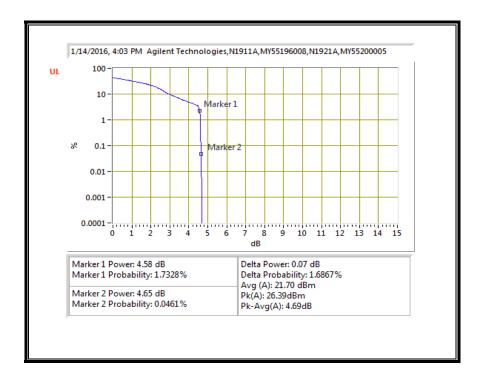


Page 861 of 929

QPSK, (3.0 MHz BAND WIDTH)

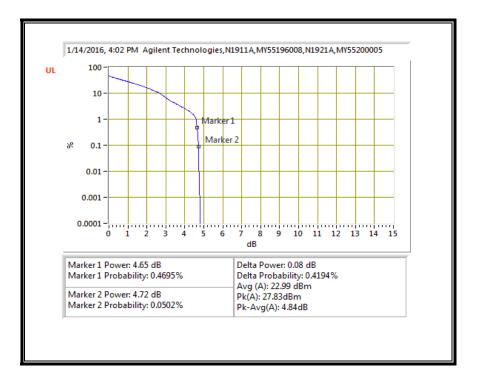


16QAM, (3.0 MHz BAND WIDTH)

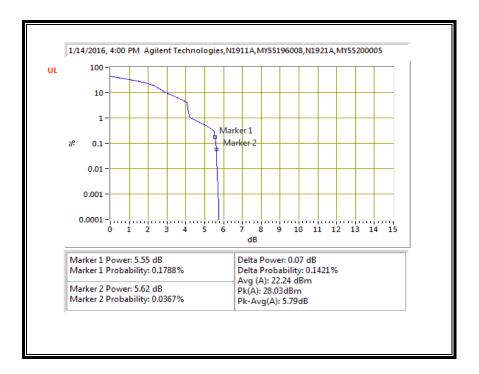


Page 862 of 929

QPSK, (5.0 MHz BAND WIDTH)

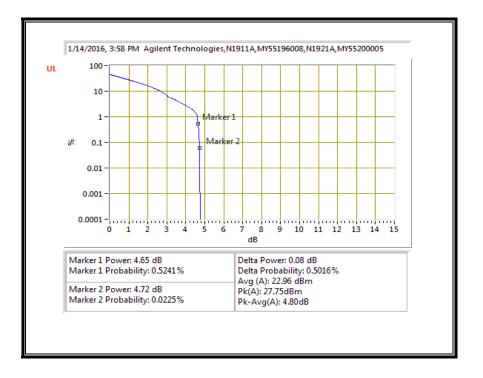


16QAM, (5.0 MHz BAND WIDTH)

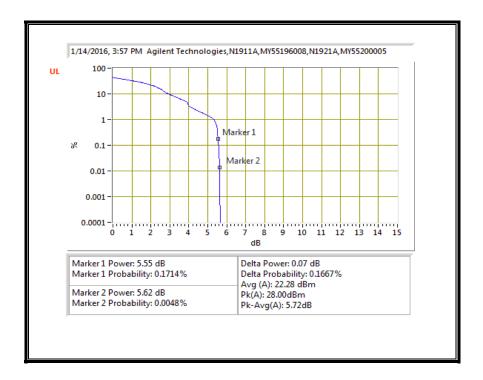


Page 863 of 929

QPSK, (10.0 MHz BAND WIDTH)

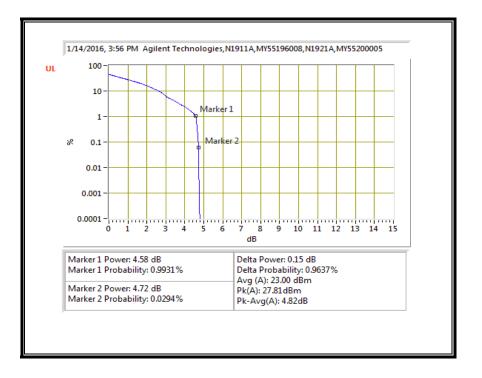


16QAM, (10.0 MHz BAND WIDTH)

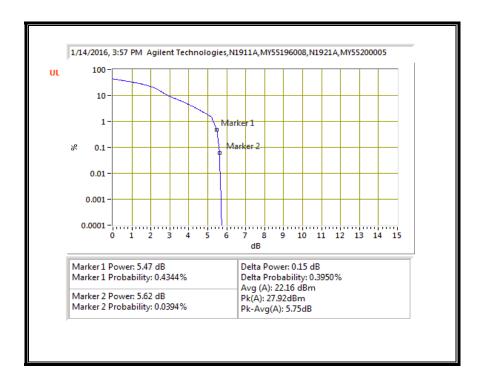


Page 864 of 929

QPSK, (15.0 MHz BAND WIDTH)

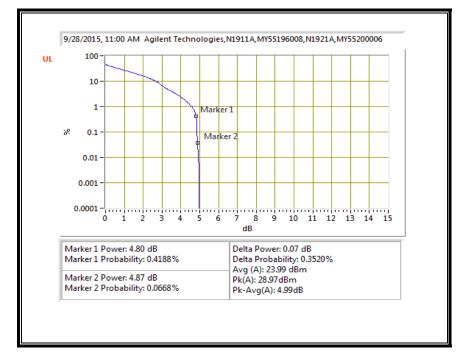


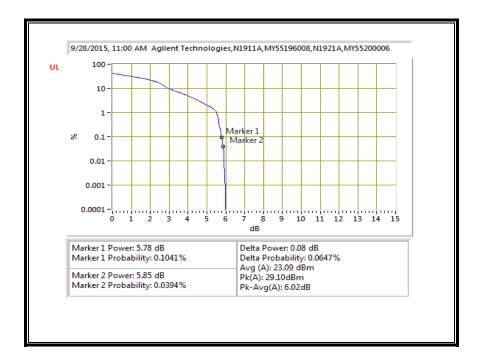
16QAM, (15.0 MHz BAND WIDTH)



Page 865 of 929

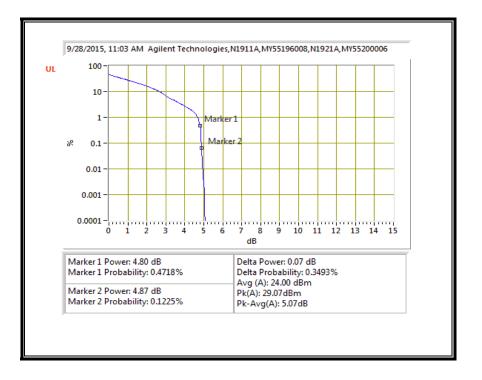
QPSK, (20.0 MHz BAND WIDTH)


16QAM, (20.0 MHz BAND WIDTH)

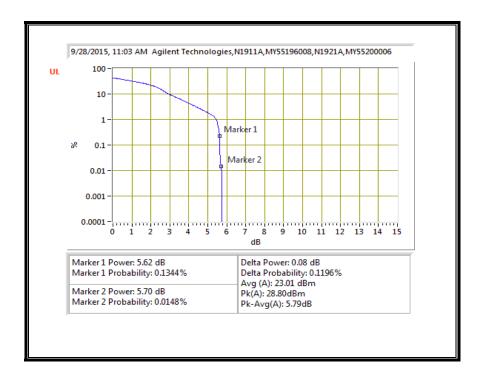

Page 866 of 929

LTE BAND 5

QPSK, (1.4 MHz BAND WIDTH)

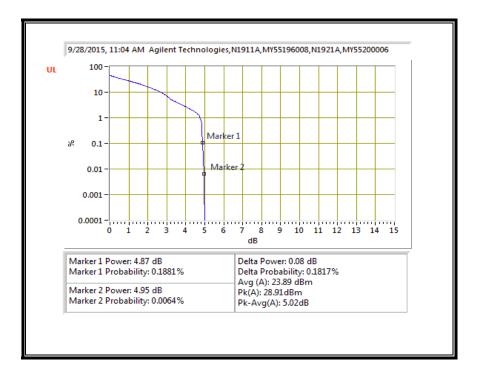


16QAM, (1.4 MHz BAND WIDTH)

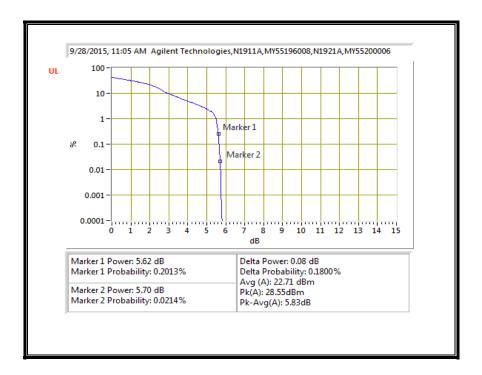


Page 867 of 929

QPSK, (3.0 MHz BAND WIDTH)

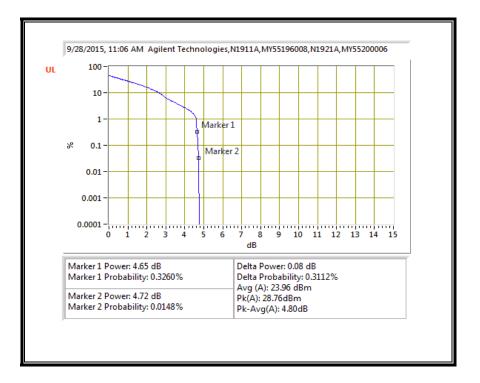


16QAM, (3.0 MHz BAND WIDTH)

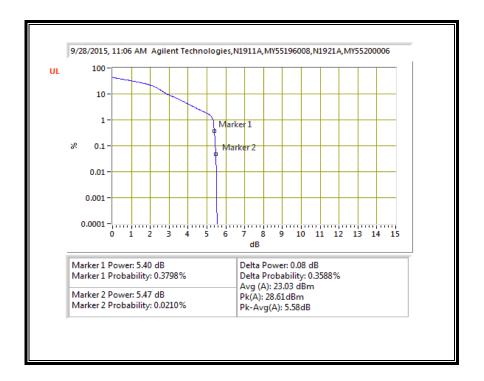


Page 868 of 929

QPSK, (5.0 MHz BAND WIDTH)

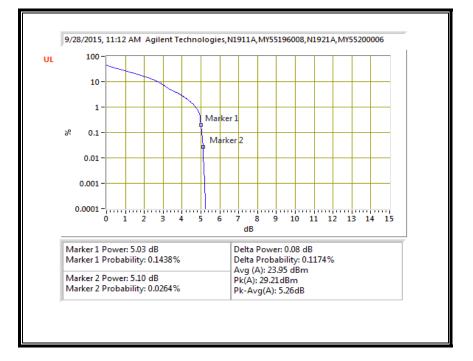


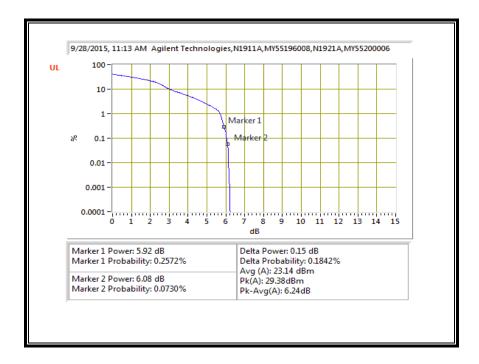
16QAM, (5.0 MHz BAND WIDTH)



Page 869 of 929

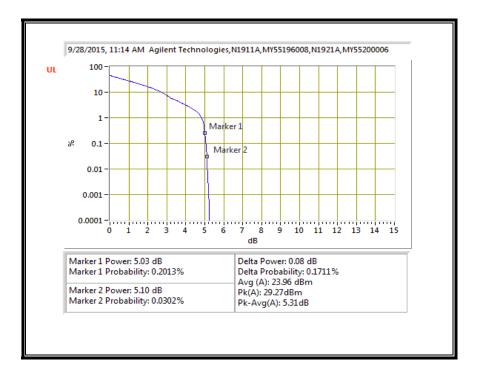
QPSK, (10.0 MHz BAND WIDTH)


16QAM, (10.0 MHz BAND WIDTH)

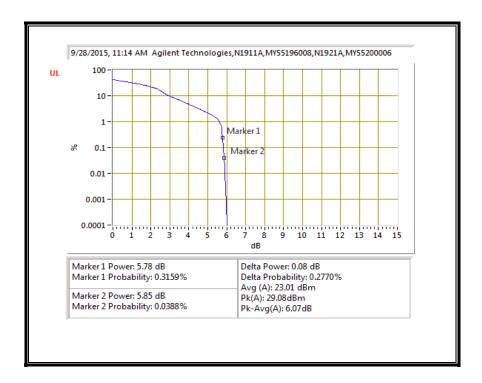

Page 870 of 929

LTE BAND 12

QPSK, (1.4 MHz BAND WIDTH)

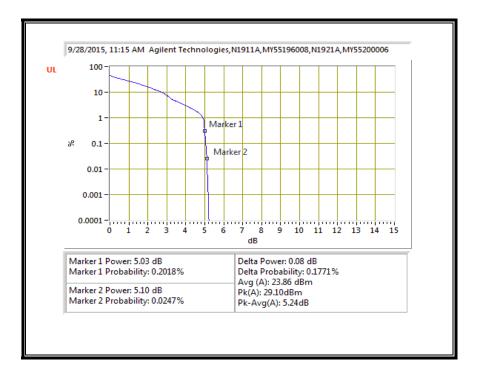


16QAM, (1.4 MHz BAND WIDTH)

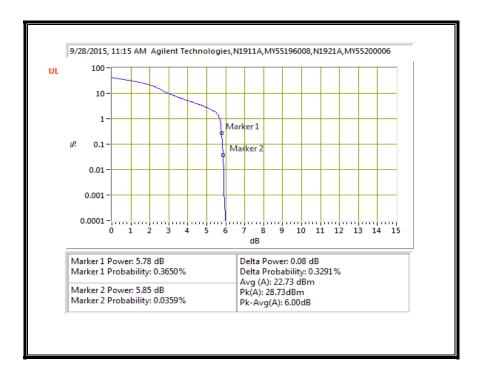


Page 871 of 929

QPSK, (3.0 MHz BAND WIDTH)

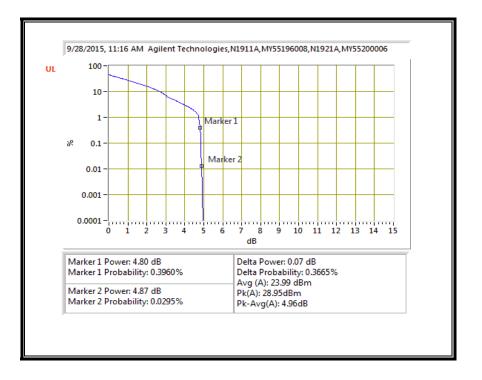


16QAM, (3.0 MHz BAND WIDTH)

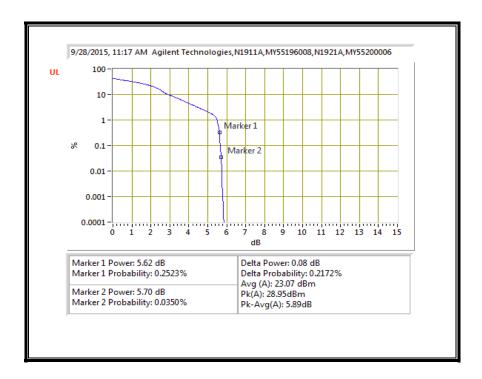


Page 872 of 929

QPSK, (5.0 MHz BAND WIDTH)

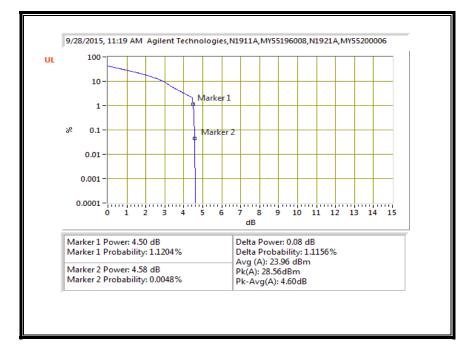


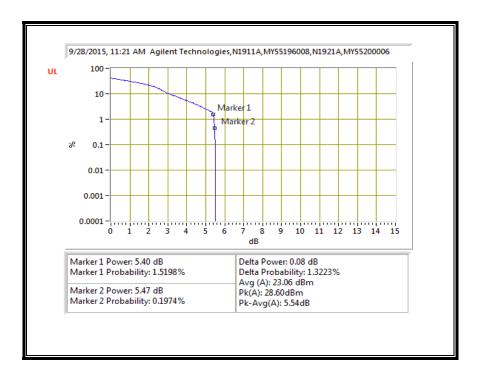
16QAM, (5.0 MHz BAND WIDTH)



Page 873 of 929

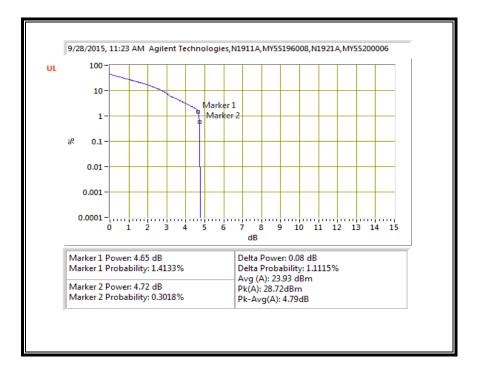
QPSK, (10.0 MHz BAND WIDTH)


16QAM, (10.0 MHz BAND WIDTH)


Page 874 of 929

LTE BAND 17

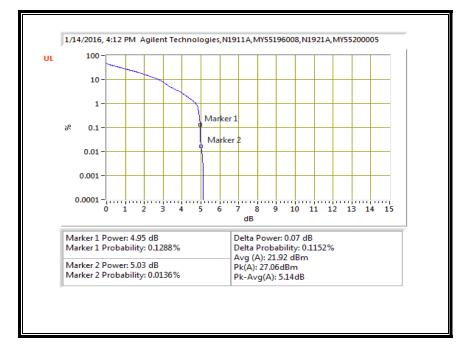
QPSK, (5.0 MHz BAND WIDTH)

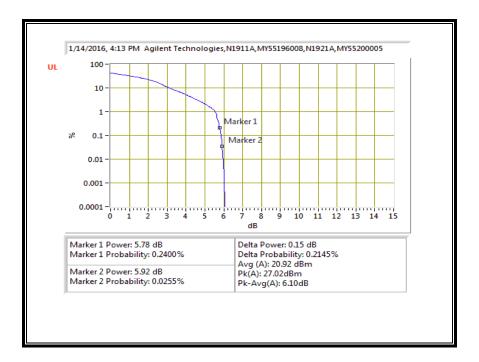


16QAM, (5.0 MHz BAND WIDTH)

Page 875 of 929

QPSK, (10.0 MHz BAND WIDTH)


16QAM, (10.0 MHz BAND WIDTH)

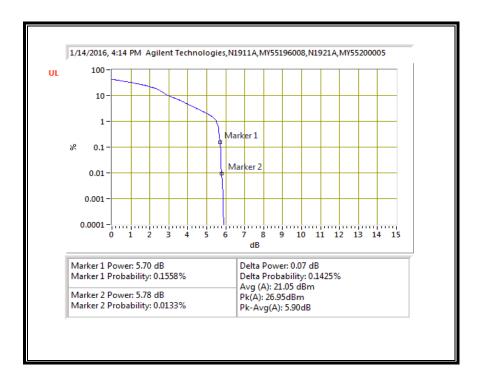

Page 876 of 929

LTE BAND 25

QPSK, (1.4 MHz BAND WIDTH)

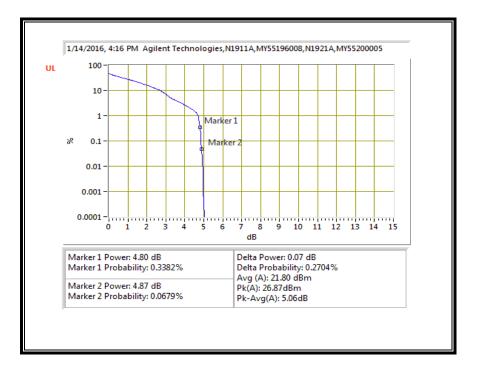


16QAM, (1.4 MHz BAND WIDTH)

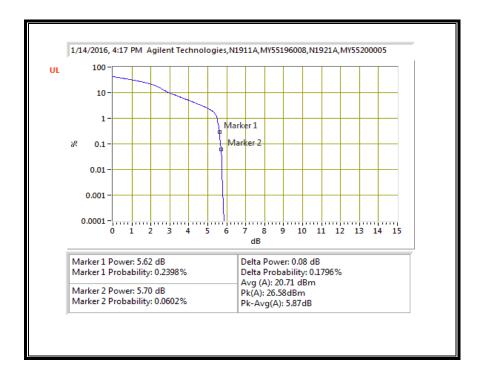


Page 877 of 929

QPSK, (3.0 MHz BAND WIDTH)

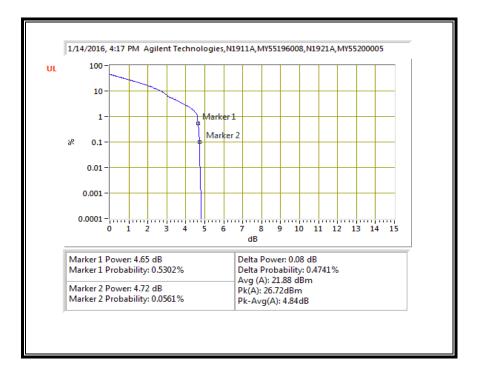


16QAM, (3.0 MHz BAND WIDTH)

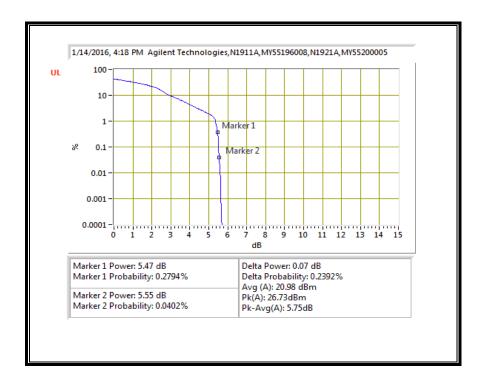


Page 878 of 929

QPSK, (5.0 MHz BAND WIDTH)

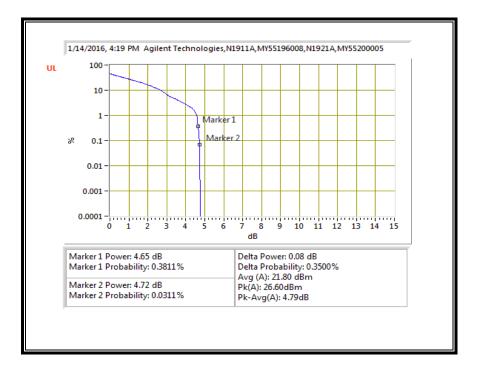


16QAM, (5.0 MHz BAND WIDTH)

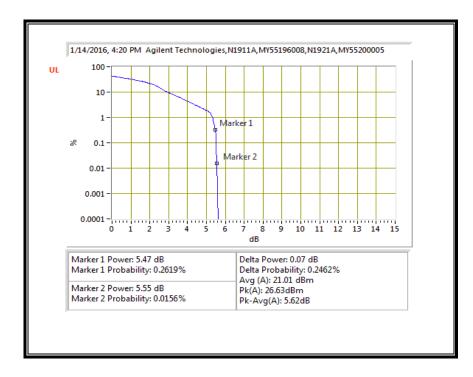


Page 879 of 929

QPSK, (10.0 MHz BAND WIDTH)

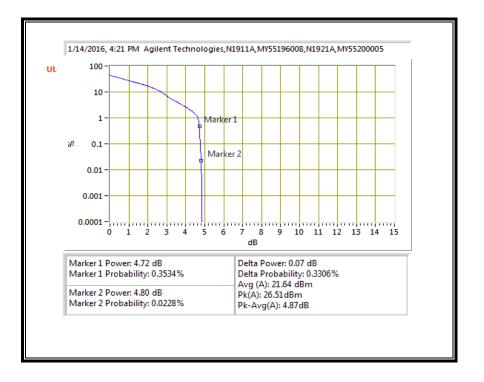


16QAM, (10.0 MHz BAND WIDTH)

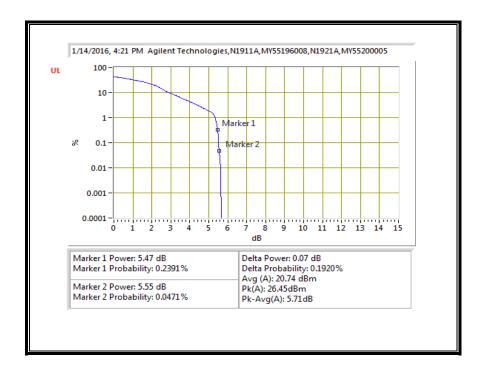


Page 880 of 929

QPSK, (15.0 MHz BAND WIDTH)

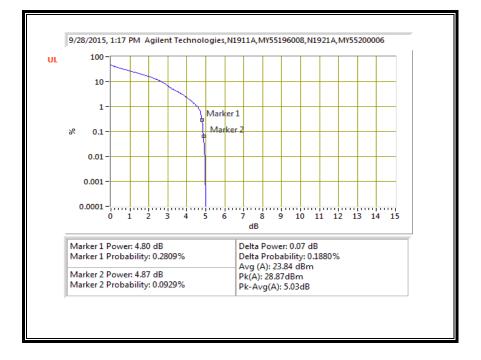


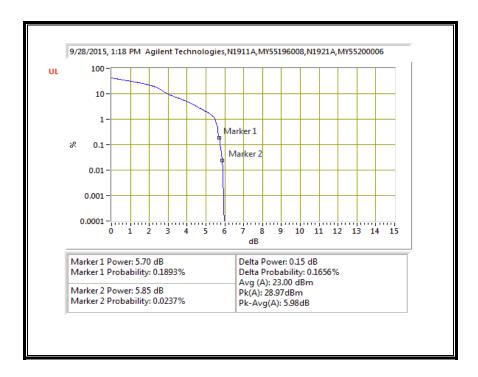
16QAM, (15.0 MHz BAND WIDTH)



Page 881 of 929

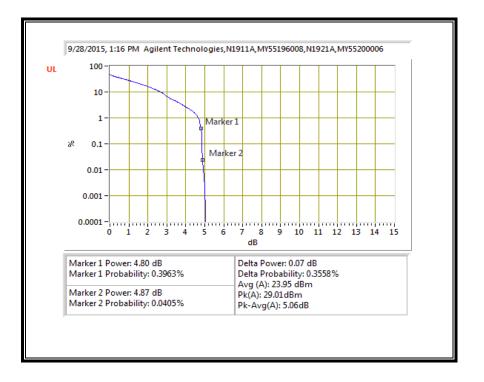
QPSK, (20.0 MHz BAND WIDTH)


16QAM, (20.0 MHz BAND WIDTH)

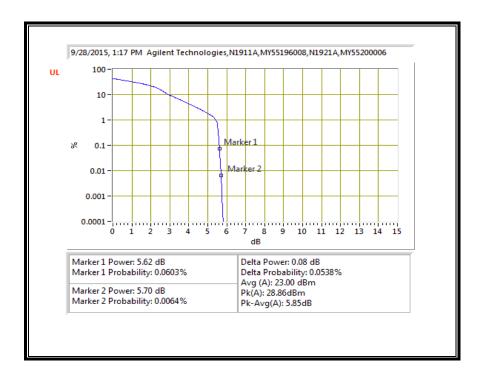

Page 882 of 929

LTE BAND 26

QPSK, (1.4 MHz BAND WIDTH)

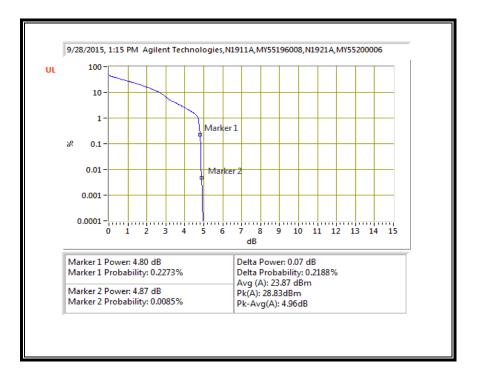


16QAM, (1.4 MHz BAND WIDTH)

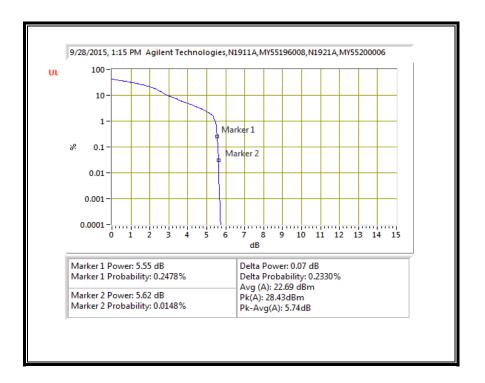


Page 883 of 929

QPSK, (3.0 MHz BAND WIDTH)



16QAM, (3.0 MHz BAND WIDTH)

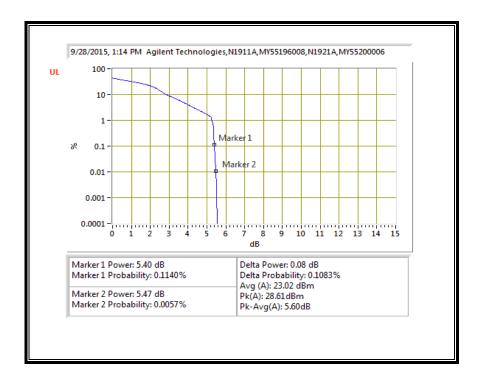


Page 884 of 929

QPSK, (5.0 MHz BAND WIDTH)



16QAM, (5.0 MHz BAND WIDTH)



Page 885 of 929

QPSK, (10.0 MHz BAND WIDTH)

16QAM, (10.0 MHz BAND WIDTH)

Page 886 of 929

9.4. FIELD STRENGTH OF SPURIOUS RADIATION, LAT

RULE PART(S)

FCC: §2.1053, §22.917, §24.238 and §27.53

LIMIT

§22.917 (e) and §24.238 (a): Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

§27.53 (g) For operations in the 698–746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB.

§27.53 (h) For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

TEST PROCEDURE

For Cellular equipment - Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

For PCS equipment - Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

Page 887 of 929

The unwanted emission power shall be measured with a resolution bandwidth of at least 1% of the occupied bandwidth in the 1 MHz band immediately outside and adjacent to the channel edge of the equipment. Beyond the 1 MHz band immediately outside the channel edge of the equipment, a resolution bandwidth of 1 MHz shall be employed. A narrower resolution bandwidth is allowed to be used provided that the measured power is integrated over the full required measurement bandwidth of 1 MHz or 1% of the occupied bandwidth as applicable.

The power of any unwanted emissions measured from the channel edge of the equipment shall be attenuated below the transmitter power, P (dBW), as follows:

a. for base station and subscriber equipment, other than mobile subscriber equipment, the attenuation shall not be less than 43 + 10 Log10 (p), dB; and

b. for mobile subscriber equipment, the attenuation shall not be less than 43 + 10 Log10 (p), dB at the channel edges and 55 + 10 Log10 (p) at 5.5 MHz away and beyond the channel edges where p in (a) and (b) is the transmitter power measured in watts.

MODES TESTED

- LTE Band 2
- LTE Band 4
- LTE Band 5
- LTE Band 7
- LTE Band 12
- LTE Band 17
- LTE Band 25
- LTE Band 26
- LTE Band 41

RESULTS

Page 888 of 929

9.4.1. LTE BAND 2

QPSK EIRP POWER FOR LTE BAND 2 (20.0MHZ BANDWIDTH)

Project fr. 09/02/15 Date: 09/02/15 Fest Engineer: T.Wang Jonfguration: EUT only Jodde: UT to may Jodde: UT EB Band 2, 20MHz OPSK Est Equipment: Substitution: Horn T59 Substitution, and 8th SMA Cable Frequency SA reading Ant. Pol. Pre-amplifer Filter Limit EIRP Notes Frequency SA reading Ant. Pol. Distance RIR P@ TX Pre-amplifer					titution Meas ated Chambe						
Interview	-	eer: ion:	09/02/15 T Wang EUT only	0MHz QPSK							
Chamber Pre-amplifer Filter Filter Limit 3m Chamber H 3m Chamber H Filter Filter EIRP Imit 5 5 6 5 7 7 4 5 3 13 0 40.3 3 40.3 3 3 10 47.0 13.0 34.0 3 3 40.3 3 3 40.3 3 3 40.3 3 3 40.3 3 3 40.3 3 3 40.3 3 40.3 3 3 40.3 3 40.3 3 4 40.3 3 4 40.3 3 4 4 3 4 4 4 3 4 4 4 3 4 4 4 3 4 4 4 3 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 <th></th> <th></th> <th>stitution an</th> <th>d 8ft SMA Ca</th> <th>ble</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>			stitution an	d 8ft SMA Ca	ble						
Interview Link Link 3m Chamber H 3m Chamber H Filter EIRP Link Distance EIRP @ TX Filter EIRP Link Delta Notes ow Channel (B60MHz) 0 0.0 13.6 37.4 1.0 53.3 13.0 40.3 9.26 69.4 H 3.0 13.6 34.3 1.0 47.0 13.0 32.8 5.61 66.1 V 3.0 15.0 36.7 1.0 49.7 1.3.0 32.8 11.13 70.6 V 3.0 14.6 33.3 1.0 44.9 13.0 32.8 5.61 66.1 V 3.0 12.6 33.3 1.0 44.9 13.0 36.7 13.05 70.6 V 3.0 11.5 28.4 1.0 32.0 13.0 26.0 Wid Channel (1880MHz) - - - - - - - -						1					1
Frequency (GHz) SA reading (dBm) Ant. Pol. (H/V) Distance (dBm) EIRP @ TX Ant End (dBm) Preamp Preamp Attenuator EIRP Limit Delta Notes 3.70 64.8 H 3.0 -16.9 37.4 1.0 -53.3 -13.0		Chamb	er	Pr	e-amplifer		Filter			Limit	
Frequency (GHz) SA reading (Bm) Ant. Pol. (H/V) Distance (dBm) Ant End (dBm) Preamp (Bm) Attenuator EIRP Limit Delta Notes 1.0w Channel (1860MHz) -	Γ	3m Chamber H	•	3m (Chamber H 🚽	Filte	er -	•	EIRP		•
Frequency (GHz) SA reading (Bm) Ant. Pol. (H/V) Distance (dBm) Ant End (dBm) Preamp (dBm) Attenuator EIRP EIRP Limit Delta Notes .ow Channel (1860MHz) -									,		_
Low Channel (1860MHz) Image: Constraint of the second				Distance	Ant End	Preamp	Attenuator	EIRP	Limit	Delta	Notes
3.70 64.8 H 3.0 -16.9 37.4 1.0 -53.3 -13.0 40.3 9.26 69.4 H 3.0 -13.6 34.3 1.0 47.0 13.0 34.0 11.13 70.1 H 3.0 -13.0 33.8 1.0 45.8 13.0 32.8 5.61 66.1 V 3.0 -15.0 36.7 1.0 50.7 13.0 37.7 7.44 58.3 V 3.0 -14.7 36.0 1.0 49.7 -13.0 37.7 13.05 -70.6 V 3.0 -12.6 33.3 1.0 44.9 13.0 -29.3 16.74 -72.2 V 3.0 -11.5 28.4 1.0 -39.0 -13.0 -26.0			(H/V)		(dBm)						
9.26 .69.4 H 3.0 .13.6 34.3 1.0 47.0 .13.0 .34.0 11.13 .70.1 H 3.0 .13.0 33.8 1.0 .45.8 .13.0 .32.8 5.61 .66.1 V 3.0 .15.0 36.7 1.0 .50.7 .13.0 .37.7 7.44 .68.3 V 3.0 .14.7 .36.0 1.0 .49.7 .13.0 .31.9 13.05 .70.6 V 3.0 .10.8 .32.4 1.0 .44.9 .13.0 .29.3 14.86 .70.8 V 3.0 .10.8 .32.4 1.0 .42.3 .13.0 .29.3 16.74 .72.2 V 3.0 .11.5 28.4 1.0 .39.0 .13.0 .26.0 Wid Channel (1880Hz)			Н	3.0	-16.9	37.4	1.0	-53.3	-13.0	-40.3	
5.61 .66.1 V 3.0 .15.0 36.7 1.0 .50.7 .13.0 .37.7 7.44 .68.3 V 3.0 .14.7 36.0 1.0 .49.7 .13.0 .36.7 13.05 .70.6 V 3.0 .12.6 .33.3 1.0 .44.9 .13.0 .31.9 14.86 .70.8 V 3.0 .12.6 .33.3 1.0 .44.9 .13.0 .29.3 16.74 .72.2 V 3.0 .11.5 .28.4 1.0 .39.0 .20.3 .26.0 Mid Channel (1880MHz) <td>9.26</td> <td>-69.4</td> <td>Н</td> <td></td> <td></td> <td>34.3</td> <td>1.0</td> <td>-47.0</td> <td></td> <td></td> <td></td>	9.26	-69.4	Н			34.3	1.0	-47.0			
7.44 .68.3 V 3.0 .14.7 36.0 1.0 .49.7 .13.0 .36.7 13.05 .70.6 V 3.0 .12.6 33.3 1.0 .44.9 .13.0 .31.9 14.86 .70.8 V 3.0 .10.8 32.4 1.0 .42.3 .13.0 .29.3 16.74 .72.2 V 3.0 .11.5 28.4 1.0 .42.3 .13.0 .29.3 16.74 .72.2 V 3.0 .11.5 28.4 1.0 .30.0 .26.0 Wid Channel (1880MHz) <td></td>											
13.05 .70.6 V 3.0 .12.6 33.3 1.0 .44.9 .13.0 .31.9 14.86 .70.8 V 3.0 .10.8 32.4 1.0 .42.3 .13.0 .29.3 16.74 .72.2 V 3.0 .11.5 28.4 1.0 .42.3 .13.0 .29.3 Wid Channel (1880MHz) <td></td>											
16.74 .72.2 V 3.0 .11.5 28.4 1.0 .39.0 .13.0 .26.0 Mid Channel (1880MHz) .	13.05	-70.6	V	3.0	-12.6	33.3	1.0	-44.9	-13.0	-31.9	
Viid Channel (1880MHz) Image: Constraint of the image: C											
3.74 -63.6 H 3.0 .15.6 37.4 1.0 -52.0 .13.0 .39.0 9.43 -69.9 H 3.0 .14.0 34.2 1.0 .47.1 .13.0 .34.1 5.62 -65.9 V 3.0 .14.8 36.7 1.0 .47.1 .13.0 .34.1 5.62 -65.9 V 3.0 .14.8 .36.7 1.0 .48.7 .13.0 .35.7 7.55 -67.4 V 3.0 .14.8 .35.9 .0 .44.8 .35.7 11.30 .71.4 V 3.0 .14.7 .33.8 1.0 .47.5 .13.0 .34.5 13.19 .70.8 V 3.0 .12.6 .33.3 1.0 .44.9 .13.0 .31.9 15.01 .71.4 V 3.0 .12.5 .28.0 1.0 .42.7 .13.0 .29.7 16.91 .73.3 V 3.0 .12.5 .28.0 1.0 .39.6 .13.0 .26.6 iigh Chanel (1900MHz)	16.74	-12.2	V	3.0	-11.5	28.4	1.0	-39.0	-13.0	-26.0	
9.43 .69.9 H 3.0 .14.0 34.2 1.0 .47.1 .13.0 .34.1 5.62 .65.9 V 3.0 .14.8 36.7 1.0 .50.5 .13.0 .37.5 7.55 .67.4 V 3.0 .13.8 35.9 1.0 .48.7 .13.0 .35.7 11.30 .71.4 V 3.0 .13.8 35.9 1.0 .47.5 .13.0 .35.7 13.19 .70.8 V 3.0 .12.6 33.3 1.0 .44.9 .13.0 .34.5 15.01 .71.4 V 3.0 .11.3 32.4 1.0 .42.7 .13.0 .34.5 16.91 .73.3 V 3.0 .11.3 32.4 1.0 .49.3 .13.0 .26.6 iigh Channel (1900HHz)	Mid Channe	i (1880MHz)									
5.62 .65.9 V 3.0 .14.8 36.7 1.0 .50.5 .13.0 .37.5 7.55 .67.4 V 3.0 .13.8 35.9 1.0 .48.7 .13.0 .35.7 11.30 .71.4 V 3.0 .14.7 33.8 1.0 .47.5 .13.0 .35.7 13.19 .70.8 V 3.0 .14.7 33.8 1.0 .47.5 .13.0 .34.5 15.01 .71.4 V 3.0 .12.6 .33.3 1.0 .44.9 .13.0 .31.9 15.01 .71.4 V 3.0 .12.5 28.0 1.0 .42.7 .13.0 .29.7 16.91 .73.3 V 3.0 .12.5 28.0 1.0 .42.7 .13.0 .29.7 16.91 .73.3 V 3.0 .12.5 28.0 1.0 .49.3 .13.0 .26.6 ight Channel (1900MHz) 3.79 .61.0 <td></td>											
7.55 .67.4 V 3.0 .13.8 35.9 1.0 .48.7 .13.0 .35.7 11.30 .71.4 V 3.0 .14.7 33.8 1.0 .47.5 .13.0 .35.7 13.19 .70.8 V 3.0 .12.6 33.3 1.0 .47.5 .13.0 .34.5 15.01 .71.4 V 3.0 .12.6 33.3 1.0 .44.9 .13.0 .34.5 16.91 .73.3 V 3.0 .12.5 28.0 1.0 .42.7 .13.0 .29.7 16.91 .73.3 V 3.0 .12.5 28.0 1.0 .39.6 .13.0 .26.6 High Channel (1900MHz)	9 4 3										
11.30 .71.4 V 3.0 .14.7 33.8 1.0 .47.5 .13.0 .34.5 13.19 .70.8 V 3.0 .12.6 33.3 1.0 .44.9 .13.0 .31.9 15.01 .71.4 V 3.0 .11.3 32.4 1.0 .42.7 .13.0 .29.7 16.91 .73.3 V 3.0 .11.2 28.0 1.0 .39.6 .13.0 .29.7 ifigh Channel (1900MHz)											
15.01 .71.4 V 3.0 .11.3 32.4 1.0 .42.7 .13.0 .29.7 16.91 .73.3 V 3.0 .12.5 28.0 1.0 .39.6 .13.0 .29.7 16.91 .73.3 V 3.0 .12.5 28.0 1.0 .39.6 .13.0 .26.6 igh Channel .1900MHz)	5.62										
16.91 .73.3 V 3.0 .12.5 28.0 1.0 .39.6 .13.0 .26.6 ligh Channel (1900MHz)	5.62 7.55										
Igh Channel (1900MHz) H 3.0 -13.0 37.3 1.0 49.3 -13.0 -36.3 3.79 61.0 H 3.0 -14.4 36.7 1.0 -50.1 -13.0 -37.1 9.50 -69.9 H 3.0 -13.9 34.1 1.0 47.1 -13.0 -37.1 15.20 -71.3 H 3.0 -11.2 31.9 1.0 42.2 -13.0 -29.2 17.13 -72.8 H 3.0 -12.4 27.5 1.0 -38.9 -13.0 -25.9	5.62 7.55 11.30 13.19	-71.4									
3.79 .61.0 H 3.0 .13.0 37.3 1.0 .49.3 .13.0 .36.3 5.68 .65.5 H 3.0 .14.4 36.7 1.0 .50.1 .13.0 .37.1 9.50 .69.9 H 3.0 .13.9 34.1 1.0 .47.1 .13.0 .34.1 15.20 .71.3 H 3.0 .13.9 34.1 1.0 .42.2 .13.0 .29.2 17.13 .72.8 H 3.0 .12.4 27.5 1.0 .38.9 .13.0 .25.9	5.62 7.55 11.30 13.19 15.01		v	J.U	-12.3	20.0	1.0	0.66-	-13.0	-20.0	
5.68 .65.5 H 3.0 .14.4 36.7 1.0 .50.1 .13.0 .37.1 9.50 .69.9 H 3.0 .13.9 34.1 1.0 .47.1 .13.0 .34.1 15.20 .71.3 H 3.0 .11.2 31.9 1.0 .42.2 .13.0 .24.1 17.13 .72.8 H 3.0 .12.4 27.5 1.0 .38.9 .13.0 .25.9	5.62 7.55 11.30 13.19 15.01										
9.50 -69.9 H 3.0 -13.9 34.1 1.0 -47.1 -13.0 -34.1 15.20 -71.3 H 3.0 -11.2 31.9 1.0 -42.2 -13.0 -29.2 17.13 -72.8 H 3.0 -12.4 27.5 1.0 -38.9 -13.0 -25.9	5.62 7.55 11.30 13.19 15.01 16.91	-73.3 el (1900MHz)									
15.20 -71.3 H 3.0 -11.2 31.9 1.0 -42.2 -13.0 -29.2 17.13 -72.8 H 3.0 -12.4 27.5 1.0 -38.9 -13.0 -25.9	5.62 7.55 11.30 13.19 15.01 16.91 High Channe 3.79	-73.3 el (1900MHz) -61.0				36.7					
17.13 -72.8 H 3.0 -12.4 27.5 1.0 -38.9 -13.0 -25.9	5.62 7.55 11.30 13.19 15.01 16.91 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	-73.3 el (1900MHz) -61.0 -65.5	Н	3.0		2/ 4					
	5.62 7.55 11.30 13.19 15.01 16.91 High Channe 3.79 5.68 9.50	-73.3 el (1900MHz) -61.0 -65.5 -69.9	H H	3.0 3.0	-13.9			-42.2	-1.3.0	-29.2	
	5.62 7.55 11.30 13.19 15.01 16.91 19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	-73.3 el (1900MHz) -61.0 -65.5 -69.9 -71.3	H H H H	3.0 3.0 3.0	-13.9 -11.2	31.9	1.0	-38.9			
11.44 -71.7 V 3.0 -15.1 33.8 1.0 -47.9 -13.0 -34.9 13.33 -71.0 V 3.0 -12.7 33.2 1.0 -44.9 -13.0 -31.9	5.62 7.55 11.30 13.19 15.01 16.91 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	-73.3 -1 (1900MHz) -61.0 -65.5 -69.9 -71.3 -72.8 -67.0	H H H V	3.0 3.0 3.0 3.0 3.0 3.0	-13.9 -11.2 -12.4 -13.3	31.9 27.5 35.9	1.0 1.0 1.0	-38.9 -48.2	-13.0 -13.0	-25.9 -35.2	

Page 889 of 929

16QAM EIRP POWER FOR LTE BAND 2 (20.0MHZ BANDWIDTH)

		-		titution Meas iated Chambe						
Company: Project #: Date: Test Engi Configura Mode:	neer: tion:	15U21635 09/02/15 T Wang EUT only LTE Band 2, 2	20MHz 16QAM							
<u>lest Equi</u> Substituti	<u>pment:</u> on: Horn T59 Sub	stitution, a	nd 8ft SMA Ca	ble						
				-						
	Chambe	r	Pre	e-amplifer		Filter			Limit	
Г	3m Chamber H	•	3m C	hamber H 🚽	Filter	· •	[EIRP	-	
			I		I			1		
Frequen (GHz)	cy SA reading (dBm)	Ant. Pol. (H/V)	Distance	EIRP @ TX Ant End (dBm)	Preamp	Attenuator	EIRP	Limit	Delta	Notes
	el (1860MHz)	(100)		(ubiii)						
7.44	-68.3	H	3.0	-14.6	36.0	1.0	-49.5	-13.0	-36.5	
11.15 13.05	-71.6 -70.5	H	3.0	-14.5 -12.0	33.8 33.3	1.0 1.0	-47.2 -44.4	-13.0 -13.0	-34.2 -31.4	
16.73	-70.5	H	3.0	-12.0	28.5	1.0	-44.4	-13.0	-31.4	
3.74	-64.5	V	3.0	-16.8	37.4	1.0	-53.1	-13.0	-40.1	
5.56	-65.1 -70.5	v v	3.0	-14.1	36.7	1.0 1.0	-49.8	-13.0	-36.8 -34.4	
9.30 14.87	-70.5	V	3.0 3.0	-14.1 -11.0	34.3 32.4	1.0	-47.4 -42.4	-13.0 -13.0	-34.4 -29.4	
Mid Chann	el (1880MHz)									
7.55	-67.3	Н	3.0	-13.4	35.9	1.0	-48.3	-13.0	-35.3	
13.17	-70.6	Н	3.0	-12.1	33.3	1.0	-44.4	-13.0	-31.4	
16.90	-72.4	H	3.0	-12.1	28.1	1.0	-39.2	-13.0	-26.2	
3.74 5.68	-63.7 -66.1	v v	3.0 3.0	-10.6 -14.8	37.4 36.7	1.0 1.0	-47.0 -50.6	-13.0 -13.0	-34.0 -37.6	
9.36	-70.6	v	3.0	-14.0	34.2	1.0	-47.3	-13.0	-34.3	
11.25	-71.9	V	3.0	-14.3	33.8	1.0	-47.1	-13.0	-34.1	
	-71.2	V	3.0	-11.1	32.3	1.0	-42.4	-13.0	-29.4	
15.03	nel (1900MHz)									
High Chanı	-59.9	H	3.0	-11.9	37.3	1.0	-48.2	-13.0	-35.2	
ligh Chanı 3.79	-70.4 -72.0	H	3.0	-14.4	34.1	1.0	-47.6	-13.0	-34.6	
ligh Chanı 3.79 9.50		H V	3.0	-11.7 -14.3	27.6 36.7	1.0 1.0	-38.3 -50.0	-13.0 -13.0	-25.3 -37.0	
ligh Chani 3.79 9.50 17.12		v	3.0	-14.5	35.9	1.0	-30.0	-13.0	-35.7	
ligh Chanı 3.79 9.50	-65.5 -67.8	V	3.0							
ligh Chani 3.79 9.50 17.12 5.68 7.56 11.40	-65.5 -67.8 -71.0	V	3.0	-13.9	33.8	1.0	-46.7	-13.0	-33.7	
High Chann 3.79 9.50 17.12 5.68 7.56	-65.5 -67.8				33.8 33.2 31.9	1.0 1.0 1.0	-46.7 -45.0 -42.3	-13.0 -13.0 -13.0	-33.7 -32.0 -29.3	

Page 890 of 929

9.4.2. LTE BAND 4

QPSK EIRP POWER FOR LTE BAND 4 (20.0MHZ BANDWIDTH)

				titution Measu ated Chamber						
Company: Project #: Date: Fest Engin Configurati	eer: on:	15U21635 09/03/15 T Wang EUT only								
lode: <u>'est Equip</u> Substitutio		LTE Band 4, 20		ble						
	Chamb	ber	Р	re-amplifer		Filter			Limit	
	3m Chamber H	•	3m (Chamber H 🚽	Filte	er	•	EIRP		•
Frequency (GHz)	y SA reading (dBm)	Ant. Pol. (H/V)	Distance	EIRP @ TX Ant End (dBm)	Preamp	Attenuator	EIRP	Limit	Delta	Notes
	I (1720MHz)									
8.57	-69.8	Н	3.0	-14.8	35.0	1.0	-48.8	-13.0	-35.8	
10.30	-70.3	Н	3.0	-13.7	33.7	1.0	-46.4	-13.0	-33.4	
12.03	-72.0	H	3.0	-14.4	33.8	1.0	-47.2	-13.0	-34.2	
13.73	-71.2	H	3.0	-12.2	33.0	1.0	-44.2	-13.0	-31.2	
15.48	-71.1	H	3.0	-10.9	31.3	1.0	-41.2	-13.0	-28.2	
3.43	-66.2	<u>v</u>	3.0	-19.1	37.7	1.0	-55.8	-13.0	-42.8	
5.13 6.88	-55.3	V	3.0 3.0	-4.9 -14.2	36.8	1.0	-40.8	-13.0	-27.8 -36.6	
6.88 17.18	-67.1 -72.7	v V	3.0	-14.2 -11.9	36.4 27.4	1.0 1.0	-49.6 -38.3	-13.0 -13.0	-36.6 -25.3	
17.10	-12.1	v	J.U	-11.3	21.4	1.0	-10.7	-13.0	-£J.J	
lid Channe	(1732.5MHz)					1				
3.47	-66.2	Н	3.0	-18.4	37.7	1.0	-55.0	-13.0	-42.0	
6.95	-66.6	Н	3.0	-13.4	36.4	1.0	-48.8	-13.0	-35.8	
8.63	-69.9	H	3.0	-14.8	34.9	1.0	-48.8	-13.0	-35.8	
15.57	-71.5	H V	3.0	-11.4 -15.4	31.1	1.0	-41.5 -51.3	-13.0	-28.5 -38.3	
5.17 10.38	-65.9 -70.1	v V	3.0 3.0	-15.4 -14.3	36.8	1.0 1.0	-51.3 -47.0	-13.0 -13.0	-38.3 -34.0	
12.12	-70.1	V	3.0	-14.5	33.8	1.0	-47.0	-13.0	-34.0	
13.89	-71.5	v	3.0	-14.1	32.9	1.0	-44.5	-13.0	-31.5	
17.30	-72.9	V	3.0	-12.0	27.2	1.0	-38.2	-13.0	-25.2	
	el (1745MHz)	-								
6.95	-67.9	H	3.0	-14.7	36.4	1.0	-50.1	-13.0	-37.1	
12.22	-72.3	H	3.0	-14.5	33.7	1.0	-47.3	-13.0	-34.3	
	-72.7 -66.3	H V	3.0 3.0	-12.3 -19.2	26.9 37.7	1.0 1.0	-38.2 -55.8	-13.0 -13.0	-25.2 -42.8	
17.42	-66.8	v V	3.0	-19.2 -16.2	37.7	1.0 1.0	-52.0	-13.0 -13.0	-42.8 -39.0	
3.47		V	3.0	-16.2 -15.7	34.8	1.0	-32.0	-13.0	-39.0	
3.47 5.23	.70.1		U.U			1.0	-45.0	-13.0	-30.0	
3.47 5.23 8.75	-70.1 -70.8		3.0	-14.9	33.1					
3.47 5.23	-70.1 -70.8 -71.1	V V	3.0 3.0	-14.9 -12.1	33.7 32.9	1.0	-44.0	-13.0	-34.0	

Page 891 of 929

16QAM EIRP POWER FOR LTE BAND 4 (20.0MHZ BANDWIDTH)

			-	titution Measu ated Chambe						
Company: Project #: Date: Fest Engin Configurat Mode:	eer: ion:	15U21635 09/03/15 T Wang EUT only LTE Band 4, 2	0MHz 16QAM							
est Equip	ment: n: Horn T59 Sub	stitution an	d 8ft SMA Ca	ble						
- abstructu		otherion, an								1
	Chamb	er	Pr	e-amplifer		Filter			Limit	
Γ	3m Chamber H	-	3m C	hamber H 🖵	Filte	r -	·	EIRP	•	
L					,		_	1		
Frequenc (GHz)	y SA reading (dBm)	Ant. Pol. (H/V)	Distance	EIRP @ TX Ant End (dBm)	Preamp	Attenuator	EIRP	Limit	Delta	Notes
	el (1720MHz)	(11/0)		(abiii)						
6.85	-67.0	Н	3.0	-14.0	36.4	1.0	-49.4	-13.0	-36.4	
8.58 3.43	-69.4 -66.1	H V	3.0 3.0	-14.4 -19.0	35.0 37.7	1.0 1.0	-48.4 -55.7	-13.0 -13.0	-35.4 -42.7	
5.13	-64.2	v	3.0	-13.8	36.8	1.0	-49.6	-13.0	-36.6	
10.32	-71.5	V	3.0	-15.7	33.7	1.0	-48.4	-13.0	-35.4	
12.05 13.77	-71.5 -70.7	v v	3.0 3.0	-14.6 -11.9	33.8 33.0	1.0 1.0	-47.4 -43.9	-13.0 -13.0	-34.4 -30.9	
15.48	-70.7 -71.5	V	3.0	-11.5 -11.2	31.3	1.0	-43. 3 -41.5	-13.0 -13.0	-30.5 -28.5	
Aid Channe	l (1732.5MHz)									
5.17	-66.0	Н	3.0	-15.7	36.8	1.0	-51.6	-13.0	-38.6	
6.93	-67.4	H	3.0	-14.2	36.4	1.0	-49.6	-13.0	-36.6	
12.12	-71.5 -66.1	H V	3.0 3.0	-13.9 -18.9	33.8 37.7	1.0 1.0	-46.7 -55.6	-13.0 -13.0	-33.7 -42.6	
3 47	-69.8	v	3.0	-15.5	34.9	1.0	-49.4	-13.0	-36.4	
3.47 8.67	-71.4	V	3.0	-15.5	33.7	1.0	-48.2	-13.0	-35.2	
8.67 10.42	-70.5 -72.7	V	3.0 3.0	-11.6 -11.8	32.9 27.0	1.0 1.0	-43.5 -37.8	-13.0 -13.0	-30.5 -24.8	
8.67 10.42 13.89		v	5.0	-11.0	21.0	1.0	-51.0	-13.0	-24.0	
8.67 10.42 13.89 17.35						-				
8.67 10.42 13.89 17.35	el (1745MHz)			-18.4	37.6	1.0	-55.0 -38.2	-13.0 -13.0	-42.0 -25.2	
8.67 10.42 13.89 17.35 ligh Chann 3.52	el (1745MHz) -66.3	H	3.0			1.0		-13.0 -13.0	-25.2 -39.3	
8.67 10.42 13.89 17.35 ligh Chann 3.52 17.42	el (1745MHz) -66.3 -72.7	Н	3.0	-12.3	26.9		-0/-1			
8.67 10.42 13.89 17.35 ligh Chann 3.52	el (1745MHz) -66.3				26.9 36.8 36.4	1.0 1.0	-52.3 -50.1	-13.0	-37.1	
8.67 10.42 13.89 17.35 igh Chann 3.52 17.42 5.23 6.97 8.74	el (1745MHz) 66.3 72.7 67.1 67.8 -70.3	H V V V	3.0 3.0 3.0 3.0 3.0	-12.3 -16.5 -14.7 -16.0	36.8 36.4 34.8	1.0 1.0 1.0	-50.1 -49.8	-13.0 -13.0	-37.1 -36.8	
8.67 10.42 13.89 17.35 10 Chann 3.52 17.42 5.23 6.97	el (1745MHz) -66.3 -72.7 -67.1 -67.8	H V V	3.0 3.0 3.0	-12.3 -16.5 -14.7	36.8 36.4	1.0 1.0	-50.1	-13.0	-37.1	

Page 892 of 929

9.4.3. LTE BAND 5

QPSK EIRP POWER FOR LTE BAND 5 (10.0MHZ BANDWIDTH)

		-		titution Meas ated Chambe						
Company: Project #: Date: Test Engine	er:	15U21635 09/03/15 T Wang								
Configurati Mode:		EUT only LTE Band 5, 2	0MHz QPSK							
Test Equipr	nent [.]									
	n: Horn T59 Sub	ostitution, ai	nd 8ft SMA Ca	ble						
	Chambe	r	Pre	-amplifer		Filter			Limit	
3	n Chamber H	-	3m C	hamber H 🖵	Filter	-		EIRP	-	
		_	1		I		1	I	_	1
Frequency (GHz)	SA reading (dBm)	Ant. Pol. (H/V)	Distance	EIRP @ TX Ant End (dBm)	Preamp	Attenuator	EIRP	Limit	Delta	Notes
ow Channe			2.0	40.0	27.7	10	77.0	42.0	64.2	
1.63 4.15	-80.8 -76.4	H	3.0 3.0	-40.6 -28.1	37.7 37.1	1.0 1.0	-77.3 -64.1	-13.0 -13.0	-64.3 -51.1	
5.01	-76.4	Н	3.0	-26.4	36.9	1.0	-62.3	-13.0	-49.3	
5.83 7.49	-78.0 -77.7	H H	3.0 3.0	-26.6 -23.9	36.7 35.9	1.0 1.0	-62.3 -58.9	-13.0 -13.0	_49.3 _45.9	
8.26	-77.6	H	3.0	-23.9	35.3	1.0	-50.5	-13.0	-43.5	
2.51	-79.1	V	3.0	-34.9	37.1	1.0	-71.0	-13.0	-58.0	
3.30	-77.9	V	3.0	-31.1	37.9	1.0	-68.0	-13.0	-55.0	
6.64	-78.6	V	3.0	-26.0	36.5	1.0	-61.5	-13.0	-48.5	
Mid Channel						1.0		40.0		
2.50	-78.3 -78.8	H H	3.0 3.0	-34.2 -31.0	37.1 37.8	1.0 1.0	-70.3 -67.9	-13.0 -13.0	-57.3 -54.9	
4.20	-70.0	n H	3.0	-31.0 -26.9	37.0	1.0	-67.9	-13.0	-34.9	
5.86	-77.8	Н	3.0	-26.4	36.7	1.0	-62.0	-13.0	-49.0	
7.56	-76.8	H	3.0	-22.9	35.9	1.0	-57.8	-13.0	-44.8	
8.36 1.66	-76.9 -80.9	H V	3.0 3.0	-22.2 -40.2	35.2 37.7	1.0 1.0	-56.3 -76.9	-13.0 -13.0	-43.3 -63.9	
5.05	-00.5	v	3.0	-40.2 -25.5	36.9	1.0	-61.4	-13.0	-48.4	
6.73	-78.6	V	3.0	-25.9	36.5	1.0	-61.3	-13.0	-48.3	
ligh Channe	I (839MHz)	L								
1.70	-81.6	Н	3.0	-40.8	37.8	1.0	-77.6	-13.0	-64.6	
4.25	-76.3	H	3.0	-27.7	37.0	1.0	-63.8	-13.0	-50.8	
6.78 7.58	-78.2 -76.6	H	3.0 3.0	-25.3 -22.7	36.4 35.9	1.0 1.0	-60.7 -57.5	-13.0 -13.0	_47.7 _44.5	
	-78.8	V	3.0	-34.6	37.1	1.0	-70.7	-13.0	-57.7	
2.51	-78.7	V	3.0	-31.7	37.8	1.0	-68.5	-13.0	-55.5	
2.51 3.40	-75.5	V	3.0	-25.3	36.9	1.0	-61.1	-13.0	-48.1	
2.51 3.40 5.03					36.7	1.0	-61.4	-13.0	-48.4	
2.51 3.40	-77.3 -77.1	V V	3.0 3.0	-25.7 -22.5	35.1	1.0	-56.6	-13.0	-43.6	

Page 893 of 929

16QAM EIRP POWER FOR LTE BAND 5 (10.0MHZ BANDWIDTH)

			-	titution Measu ated Chambe						
company: roject #: ate: est Engine configuratio	er:	15U21635 09/03/15 T Wang EUT only								
lode: est Equipm		LTE Band 5, 2	omhz 16qam							
ubstitution	: Horn T59 Sub	ostitution, an								-1
	Chamb	er	P	re-amplifer		Filter			Limit	
3	8m Chamber H	•	3m (Chamber H	. Filt	er	•	EIRP		•
			I	1		I	I			
Frequency (GHz)	SA reading (dBm)	Ant. Pol. (H/V)	Distance	EIRP @ TX Ant End (dBm)	Preamp	Attenuator	EIRP	Limit	Delta	Notes
ow Channel		(□/٧)		(apm)						
3.33	-78.3	Н	3.0	-30.5	37.8	1.0	-67.3	-13.0	-54.3	
4.18	-76.5	Н	3.0	-28.1	37.0	1.0	-64.1	-13.0	-51.1	
5.79	-77.1	H	3.0	-25.8	36.7	1.0	-61.5	-13.0	-48.5	
8.26 1.66	-77.1 -81.7	H V	3.0 3.0	-22.4 -41.0	35.3 37.7	1.0 1.0	-56.7 -77.7	-13.0 -13.0	-43.7 -64.7	
2.48	-79.2	v	3.0	-35.1	37.1	1.0	-71.2	-13.0	-58.2	
5.01	-75.9	V	3.0	-25.7	36.9	1.0	-61.5	-13.0	-48.5	
6.66	-78.3	V	3.0	-25.6	36.5	1.0	-61.1	-13.0	-48.1	
7.48	-77.4	V	3.0	-23.8	36.0	1.0	-58.8	-13.0	-45.8	
lid Channel	(836.5MHz)									
3.31	-78.1	Н	3.0	-30.3	37.8	1.0	-67.2	-13.0	-54.2	
4.21	-76.5	H	3.0	-28.0	37.0	1.0	-64.1	-13.0	-51.1	
5.00 5.86	-76.2 -77.2	H	3.0 3.0	-26.2 -25.7	36.9 36.7	1.0 1.0	-62.1	-13.0 -13.0	-49.1 -48.4	
6.73	-78.0	H	3.0	-25.2	36.5	1.0	-61.4 -60.6	-13.0	-40.4 -47.6	
1.65	-80.9	V	3.0	-40.3	37.7	1.0	-77.1	-13.0	-64.1	
2.51	-78.6	V	3.0	-34.4	37.1	1.0	-70.5	-13.0	-57.5	
7.51	-77.5	V	3.0	-23.9	35.9	1.0	-58.8	-13.0	-45.8	
8.36	-77.7	V	3.0	-23.2	35.2	1.0	-57.3	-13.0	-44.3	
igh Channel	(839MHz)									
2.51	-79.0	Н	3.0	-34.8	37.1	1.0	-70.9	-13.0	-57.9	
3.35	-78.5	Н	3.0	-30.7	37.8	1.0	-67.5	-13.0	-54.5	
4.21	-75.9	Н	3.0	-27.5	37.0	1.0	-63.5	-13.0	-50.5	
5.06	-76.1	H	3.0	-26.0	36.9	1.0	-61.8	-13.0	-48.8	
	-78.2 -76.9	H	3.0 3.0	-25.3 -22.1	36.4 35.1	1.0 1.0	-60.8 -56.2	-13.0 -13.0	-47.8 -43.2	
6.78		V	3.0	-22.1 -41.0	37.7	1.0	-36.2	-13.0	-43.2 -64.8	
8.41	_81.8				91.1					
	-81.8 -76.2	v	3.0	-24.7	36.7	1.0	-60.4	-13.0	-47.4	

Page 894 of 929

9.4.4. LTE BAND 7

QPSK EIRP POWER FOR LTE BAND 7 (20.0MHZ BANDWIDTH)

			-	titution Measu ated Chambe						
mpany:										
oject #: te:		15U21635								
st Engi		09/03/15 T Wang								
onfigura		EUT only								
ode:		LTE Band 7, 2	MHz QPSK							
	on: Horn T59 Sub Chambe 3m Chamber H		Pre	-amplifer namber H	Filter	Filter		LTE B	Limit 7 _	
				EIRP @ TX						
equeno (GHz)	y SA reading (dBm)	Ant. Pol. (H/V)	Distance	Ant End (dBm)	Preamp	Attenuator	EIRP	Limit	Delta	Notes
(GHz) w Chann	(dBm) el (2510MHz)	(H/V)	Distance	Ant End (dBm)						Notes
(GHz) w Chann 7.51	(dBm) el (2510MHz) -64.3	(H/V) Н	3.0	Ant End (dBm)	35.9	1.0	-45.4	-25.0	-20.4	Notes
(GHz) w Chann 7.51 5.00	(dBm) el (2510MHz) -64.3 -66.0	(H/V) H V	3.0 3.0	Ant End (dBm) -10.5 -15.9	35.9 36.9	1.0 1.0	_45.4 _51.7	-25.0 -25.0	-20.4 -26.7	Notes
(GHz) w Chann 7.51	(dBm) el (2510MHz) -64.3	(H/V) Н	3.0	Ant End (dBm)	35.9	1.0	-45.4	-25.0	-20.4	Notes
(GHz) w Chann 7.51 5.00 7.51 10.04 12.56	(dBm) el (2510MHz) 64.3 66.0 61.5 70.6 71.7	(H/V) H V V V V	3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -10.5 -15.9 -5.5 -14.4 -14.2	35.9 36.9 35.9 33.7 33.6	1.0 1.0 1.0 1.0 1.0	-45.4 -51.7 -40.4 -47.1 -46.8	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-20.4 -26.7 -15.4 -22.1 -21.8	Notes
(GHz) w Chann 7.51 5.00 7.51 10.04	(dBm) el (2510MHz) -64.3 -66.0 -61.5 -70.6	(H/V) H V V V	3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -10.5 -15.9 -5.5 -14.4	35.9 36.9 35.9 33.7	1.0 1.0 1.0 1.0 1.0	-45.4 -51.7 -40.4 -47.1	-25.0 -25.0 -25.0 -25.0	-20.4 -26.7 -15.4 -22.1	Notes
(GHz) w Chann 7.51 5.00 7.51 10.04 12.56 15.08	(dBm) el (2510MHz) 64.3 66.0 61.5 70.6 71.7	(H/V) H V V V V	3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -10.5 -15.9 -5.5 -14.4 -14.2	35.9 36.9 35.9 33.7 33.6	1.0 1.0 1.0 1.0 1.0	-45.4 -51.7 -40.4 -47.1 -46.8	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-20.4 -26.7 -15.4 -22.1 -21.8	Notes
(GHz) w Chann 7.51 5.00 7.51 10.04 12.56 15.08 d Channe 7.58	(dBm) el (2510MHz) -64.3 -66.0 -61.5 -70.6 -71.7 -71.5 el (2535MHz) -62.5	(H/V) H V V V V V H	3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -10.5 -15.9 -5.5 -14.4 -14.2 -11.4 -14.2 -11.4	35.9 36.9 35.9 33.7 33.6 32.2 35.9	1.0 1.0 1.0 1.0 1.0 1.0 1.0	45.4 -51.7 -40.4 -47.1 -46.8 -42.6 -43.5	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-20.4 -26.7 -15.4 -22.1 -21.8 -17.6 -18.5	Notes
(GHz) w Chann 7.51 5.00 7.51 10.04 12.56 15.08 d Channe 7.58 5.05	(dBm) el (2510MHz) -64.3 -66.0 -61.5 -70.6 -71.7 -71.5 el (2535MHz) -62.5 -64.9	(H/V) H V V V V V H V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -10.5 -15.9 -5.5 -14.4 -14.2 -11.4 	35.9 36.9 33.7 33.6 32.2 35.9 36.9	1.0 1.0 1.0 1.0 1.0 1.0 1.0	45.4 -51.7 40.4 -47.1 46.8 42.6 	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-20.4 -26.7 -15.4 -22.1 -21.8 -17.6 -18.5 -25.5	Notes
(GHz) w Chann 7.51 5.00 7.51 10.04 12.56 15.08 I Channe 7.58 5.05 7.58	(dBm) el (2510MHz) -64.3 -66.0 -61.5 -70.6 -71.7 -71.5 -70.6 -71.7 -71.5 -22.5 -64.9 -61.7	(H/V) H V V V V H V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -10.5 -15.9 -5.5 -14.4 -14.2 -11.4 	35.9 36.9 33.7 33.6 32.2 35.9 36.9 35.9 35.9	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	45.4 -51.7 -40.4 -47.1 -46.8 -42.6 	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	20.4 26.7 15.4 .22.1 21.8 .17.6 .18.5 25.5 .15.5	Notes
(GHz) v Chann 7.51 5.00 7.51 10.04 12.56 15.08 I Channe 7.58 5.05	(dBm) el (2510MHz) -64.3 -66.0 -61.5 -70.6 -71.7 -71.5 el (2535MHz) -62.5 -64.9 -61.7 -69.3 -71.2	(H/V) H V V V V V V V V V V V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -10.5 -15.9 -5.5 -14.4 -14.2 -11.4 -8.6 -14.6 -5.6 -13.1 -13.6	35.9 36.9 35.9 33.7 33.6 32.2 35.9 36.9 35.9 35.9 35.9 33.7 33.5	1.0 1.0 1.0 1.0 1.0 1.0 1.0	45.4 -51.7 40.4 -47.1 46.8 42.6 	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	20.4 26.7 15.4 22.1 21.8 17.6 18.5 25.5 15.5 20.8 21.1	Notes
(GHz) w Chann 7.51 5.00 7.51 10.04 12.56 15.08 1 Channe 7.58 5.05 7.58 10.11	(dBm) el (2510MHz) -64.3 -66.0 -61.5 -70.6 -71.7 -71.5 -71.5 -70.6 -71.7 -71.5 -71.5 -70.6 -71.7 -71.5 -70.6 -71.7 -71.5 -70.6 -71.7 -71.5 -70.6 -71.7 -71.5 -70.6 -71.7 -71.5 -70.6 -71.7 -71.5 -70.6 -71.5 -70.6 -71.7 -71.5 -71.5 -70.6 -71.7 -71.5 -71.5 -70.6 -71.7 -71.5 -71.5 -70.6 -71.7 -71.5 -71.5 -70.6 -71.7 -71.5 -71.5 -70.6 -71.7 -71.5 -71.5 -70.6 -71.7 -71.5	(H/V) H V V V V V V V V V V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -10.5 -15.9 -5.5 -14.4 -14.2 -11.4 -14.2 -11.4 -8.6 -14.6 -5.6 -13.1	35.9 36.9 33.7 33.6 32.2 35.9 36.9 35.9 35.9 33.7	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	45.4 -51.7 40.4 47.1 46.8 42.6 	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-20.4 -26.7 -15.4 -22.1 -21.8 -17.6 	Notes
(GHz) v Chann 7.51 5.00 7.51 10.04 12.56 15.08 Channe 7.58 5.05 7.58 10.11 12.65 15.21	(dBm) el (2510MHz) -64.3 -66.0 -61.5 -70.6 -71.7 -71.5 -70.6 -71.7 -71.5 -62.5 -64.9 -61.7 -69.3 -71.2 -70.8	(H/V) H V V V V V V V V V V V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -10.5 -15.9 -5.5 -14.4 -14.2 -11.4 -8.6 -14.6 -5.6 -13.1 -13.6	35.9 36.9 35.9 33.7 33.6 32.2 35.9 36.9 35.9 35.9 35.9 33.7 33.5	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	45.4 -51.7 -40.4 -47.1 -46.8 -42.6 -43.5 -50.5 -40.5 -40.5 -45.8 -45.8 -46.1	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	20.4 26.7 15.4 22.1 21.8 17.6 18.5 25.5 15.5 20.8 21.1	Notes
(GHz) v Chann 7.51 5.00 7.51 10.04 12.56 15.08 Channe 7.58 5.05 7.58 10.11 12.65 15.21 h Channe	(dBm) el (2510MHz) -64.3 -66.0 -61.5 -70.6 -71.7 -71.5 el (2535MHz) -62.5 -64.9 -61.7 -69.3 -71.2 -70.8 el (2560MHz)	(H/V) H V V V V V V V V V V V V V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -10.5 -15.9 -5.5 -14.4 -14.2 -11.4 -8.6 -14.6 -5.6 -13.1 -13.6	35.9 36.9 35.9 33.7 33.6 32.2 35.9 36.9 35.9 35.9 35.9 33.7 33.5	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	45.4 -51.7 -40.4 -47.1 -46.8 -42.6 -43.5 -50.5 -40.5 -40.5 -45.8 -45.8 -46.1	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	20.4 26.7 15.4 22.1 21.8 17.6 18.5 25.5 15.5 20.8 21.1	Notes
(GHz) v Chann 7.51 5.00 7.51 10.04 12.56 15.08 Channe 7.58 5.05 7.58 10.11 12.65 15.21	(dBm) el (2510MHz) -64.3 -66.0 -61.5 -70.6 -71.7 -71.5 -70.6 -71.7 -71.5 -62.5 -64.9 -61.7 -69.3 -71.2 -70.8	(H/V) H V V V V V V V V V V V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -10.5 -15.9 -5.5 -14.4 -14.2 -11.4 -14.2 -11.4 -3.6 -14.6 -5.6 -13.1 -13.6 -10.7	35.9 36.9 33.7 33.6 32.2 35.9 36.9 35.9 36.9 35.9 33.7 33.5 31.9	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	45.4 -51.7 -40.4 -47.1 -46.8 -42.6 -43.5 -50.5 -40.5 -40.5 -45.8 -45.8 -45.8 -45.8	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	20.4 26.7 15.4 22.1 21.8 17.6 18.5 25.5 15.5 20.8 21.1 16.6	Notes
(GHz) v Chann 7.51 5.00 7.51 10.04 12.56 15.08 Channe 7.58 5.05 7.58 5.05 7.58 10.11 12.65 15.21 h Chann 7.65	(dBm) el (2510MHz) -64.3 -66.0 -61.5 -70.6 -71.7 -71.5 -71.5 -71.5 -71.5 -71.5 -71.7 -71.5 -71.7 -71.5 -71.7 -70.8 -71.2 -70.8 -71.2 -70.8 -71.2 -70.8 -71.2 -70.8 -71.2 -70.8 -71.2 -70.8 -71.2 -70.8 -71.2 -70.8 -71.2 -70.8 -71.5 -71.7 -71.5 -71.5 -71.5 -71.5 -71.5 -71.7 -71.5 -71.7 -71.5 -71.7 -71.5 -71.7 -71.5 -71.7 -71.7 -71.5 -71.7 -71.5 -71.7 -71.7 -71.5 -71.7 -71.5 -71.7 -71.5 -71.7 -71.5 -71.7 -71.2 -71.2 -70.8 -71.2 -71.2 -70.8 -71.2 -71.2 -70.8 -71.5 -71.2 -70.8 -71.5 -71.2 -70.8 -71.5 -71.2 -70.8 -71.5 -71.2 -70.8 -71.5 -71.2 -70.8 -71.2 -70.8 -71.2 -70.8 -71.2 -70.8 -71.2 -70.8 -71.5 -71.2 -70.8 -71.5	(H/V) H V V V V V V V V V V V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -10.5 -15.9 -5.5 -14.4 -14.2 -11.4 -14.2 -11.4 -14.6 -5.6 -13.1 -13.6 -10.7 -9.6 -13.1 -7.2	35.9 36.9 33.7 33.6 32.2 35.9 36.9 35.9 35.9 33.7 33.5 31.9 35.8 35.8 36.9 35.8	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	45.4 -51.7 -40.4 -47.1 -46.8 -42.6 	-25.0 -25.0	20.4 26.7 15.4 22.1 21.8 18.5 25.5 15.5 20.8 21.1 16.6 19.4 24.0 17.0	Notes
(GHz) v Chann 7.51 5.00 7.51 10.04 12.56 15.08 Channe 7.58 5.05 7.58 10.11 12.65 15.21 h Chann 7.65 5.10	(dBm) el (2510MHz) -64.3 -66.0 -61.5 -70.6 -71.7 -71.5 -70.6 -71.7 -71.5 -64.9 -64.9 -61.7 -69.3 -71.2 -70.8 -70.8 -70.8 -70.8 -70.8 -71.2 -70.8	(H/V) H V V V V V V V V V V V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -10.5 -15.9 -5.5 -14.4 -14.2 -11.4 -14.6 -5.6 -5.6 -13.1 -13.6 -10.7 -9.6 -13.1	35.9 36.9 33.7 33.6 32.2 35.9 36.9 35.9 33.7 33.5 31.9 35.8 35.8 36.9	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	45.4 -51.7 -40.4 -47.1 -46.8 -42.6 - - - - - - - - - - - - - - - - - - -	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	20.4 26.7 15.4 22.1 21.8 17.6 18.5 25.5 15.5 20.8 21.1 16.6 19.4 24.0	Notes

Page 895 of 929

16QAM EIRP POWER FOR LTE BAND 7 (20.0MHZ BANDWIDTH)

			-	titution Meas iated Chambe						
ompany:										
roject #:		15U21635								
Date:		09/03/15								
lest Engi	neer:	T Wang								
Configura		EUT only								
/lode:		LTE Band 7, 2	0MHz 16QAM							
Г	Chambe 3m Chamber H	r T		e-amplifer	Filter	Filter		LTE B	Limit	Ţ
							_			
L	1		,	-		1			1	
Frequend (GHz)		Ant. Pol.	Distance	EIRP @ TX Ant End (dBm)	Preamp	Attenuator	EIRP	Limit	Delta	Notes
(GHz)	cy SA reading (dBm) el (2510MHz)	Ant. Pol. (H/V)	Distance		Preamp	Attenuator	EIRP	Limit	Delta	Notes
(GHz) ow Chann 12.53	(dBm) el (2510MHz) -70.8	<u>(H/V)</u> н	3.0	Ant End (dBm)	33.6	1.0	-45.4	-25.0	-20.4	Notes
(GHz) ow Chann 12.53 5.00	(dBm) el (2510MHz) -70.8 -65.4	(H/V) H V	3.0 3.0	Ant End (dBm) -12.8 -15.3	33.6 36.9	1.0 1.0	-45.4 -51.1	-25.0 -25.0	-20.4 -26.1	Notes
(GHz) ow Chann 12.53 5.00 7.51	(dBm) el (2510MHz) -70.8 -65.4 -62.7	(H/V) H V V	3.0 3.0 3.0	Ant End (dBm) -12.8 -15.3 -9.1	33.6 36.9 35.9	1.0 1.0 1.0	-45.4 -51.1 -44.0	-25.0 -25.0 -25.0	-20.4 -26.1 -19.0	Notes
(GHz) ow Chann 12.53 5.00 7.51 12.53	(dBm) el (2510MHz) -70.8 -65.4 -62.7 -70.8	(H/V) H V V V	3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -12.8 -15.3 -9.1 -13.3	33.6 36.9 35.9 33.6	1.0 1.0 1.0 1.0 1.0	_45.4 _51.1 _44.0 _45.9	-25.0 -25.0 -25.0 -25.0	-20.4 -26.1 -19.0 -20.9	Notes
(GHz) ow Chann 12.53 5.00 7.51 12.53 15.09	(dBm) el (2510MHz) -70.8 -65.4 -62.7 -70.8 -71.4	(H/V) H V V	3.0 3.0 3.0	Ant End (dBm) -12.8 -15.3 -9.1	33.6 36.9 35.9	1.0 1.0 1.0	-45.4 -51.1 -44.0	-25.0 -25.0 -25.0	-20.4 -26.1 -19.0	Notes
(GHz) ow Chann 12.53 5.00 7.51 12.53 15.09 Iid Chann	(dBm) el (2510MHz) -70.8 -65.4 -62.7 -70.8 -71.4 el (2535MHz)	(H/V) H V V V V	3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -12.8 -15.3 -9.1 -13.3 -11.3	33.6 36.9 35.9 33.6 32.2	1.0 1.0 1.0 1.0 1.0	.45.4 -51.1 -44.0 -45.9 -42.4	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-20.4 -26.1 -19.0 -20.9 -17.4	Notes
(GHz) ow Chann 12.53 5.00 7.51 12.53 15.09 Nid Chann 15.21	(dBm) el (2510MHz) -70.8 -65.4 -62.7 -70.8 -71.4 el (2535MHz) -71.9	(H/V) H V V V V	3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -12.8 -15.3 -9.1 -13.3 -11.3 -11.8	33.6 36.9 35.9 33.6 32.2 31.9	1.0 1.0 1.0 1.0 1.0 1.0	45.4 -51.1 44.0 45.9 42.4 -42.7	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-20.4 -26.1 -19.0 -20.9 -17.4 -17.7	Notes
(GHz) ow Chann 12.53 5.00 7.51 12.53 15.09 Mid Chann 15.21 5.05	(dBm) el (2510MHz) -70.8 -65.4 -62.7 -70.8 -71.4 el (2535MHz) -71.9 -65.1	(H/V) H V V V V H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -12.8 -15.3 -9.1 -13.3 -11.3 -11.8 -11.8 -14.8	33.6 36.9 35.9 33.6 32.2 31.9 36.9	1.0 1.0 1.0 1.0 1.0 1.0 1.0	45.4 -51.1 -44.0 -45.9 -42.4 -42.7 -50.7	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-20.4 -26.1 -19.0 -20.9 -17.4 -17.7 -25.7	Notes
(GHz) ow Chann 12.53 5.00 7.51 12.53 15.09 Mid Chann 15.21 5.05 7.58	(dBm) el (2510MHz) -70.8 -65.4 -62.7 -70.8 -71.4 el (2535MHz) -71.9	(H/V) H V V V V	3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -12.8 -15.3 -9.1 -13.3 -11.3 -11.8	33.6 36.9 35.9 33.6 32.2 31.9	1.0 1.0 1.0 1.0 1.0 1.0	45.4 -51.1 -44.0 -45.9 -42.4 -42.7 -50.7 -41.5	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-20.4 -26.1 -19.0 -20.9 -17.4 -17.7	Notes
(GHz) ow Chann 12.53 5.00 7.51 12.53 15.09 Mid Chann 15.21 5.05	(dBm) el (2510MHz) -70.8 -65.4 -62.7 -70.8 -71.4 el (2535MHz) -71.9 -65.1 -60.3	(H/V) H V V V V H V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -12.8 -15.3 -9.1 -13.3 -11.3 -11.8 -11.8 -14.8 -6.6	33.6 36.9 35.9 33.6 32.2 31.9 36.9 35.9	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	45.4 -51.1 -44.0 -45.9 -42.4 -42.7 -50.7	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-20.4 -26.1 -19.0 -20.9 -17.4 -17.7 -25.7 -16.5	Notes
(GHz) ow Chann 12.53 5.00 7.51 12.53 15.09 Mid Chann 15.21 5.05 7.58 10.13 12.66	(dBm) el (2510MHz) -70.8 -65.4 -62.7 -70.8 -71.4 el (2535MHz) -71.9 -65.1 -60.3 -69.8 -71.1	(H/V) H V V V V H V V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -12.8 -15.3 -9.1 -13.3 -11.3 -11.3 -11.8 -44.8 -6.6 -13.5	33.6 36.9 35.9 33.6 32.2 31.9 36.9 35.9 33.7	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	45.4 -51.1 -44.0 -45.9 -42.4 -42.7 -50.7 -41.5 -46.2	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-20.4 -26.1 -19.0 -20.9 -17.4 -17.7 -25.7 -16.5 -21.2	Notes
(GHz) ow Chann 12.53 5.00 7.51 12.53 15.09 Nid Chann 15.21 5.05 7.58 10.13 12.66	(dBm) el (2510MHz) -70.8 -65.4 -62.7 -70.8 -71.4 -62.7 -70.8 -71.9 -65.1 -60.3 -69.8 -71.1 vel (2560MHz)	(H/V) H V V V V V V V V V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -12.8 -15.3 -9.1 -13.3 -11.3 -11.8 -14.8 -6.6 -13.5 -13.5	33.6 36.9 35.9 33.6 32.2 31.9 36.9 35.9 33.7 33.5	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	45.4 -51.1 -44.0 -45.9 -42.4 -42.7 -50.7 -41.5 -46.2 -46.1	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-20.4 -26.1 -19.0 -20.9 -17.4 -17.7 -25.7 -16.5 -21.2 -21.1	Notes
(GHz) ow Chann 12.53 5.00 7.51 12.53 15.09 Nid Chann 15.21 5.05 7.58 10.13 12.66 Iigh Chann 10.23	(dBm) el (2510MHz) -70.8 -65.4 -62.7 -70.8 -71.4 -71.9 -65.1 -60.3 -69.8 -71.1 -70.8 -71.1 -69.8 -71.1 -70.8	(H/V) H V V V V H V V V V H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -12.8 -15.3 -9.1 -13.3 -11.3 -11.8 -14.8 -6.6 -13.5 -13.5 -13.5 -13.5 -14.1	33.6 36.9 35.9 33.6 32.2 31.9 36.9 35.9 33.7 33.5 33.7	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	45.4 -51.1 -44.0 -45.9 -42.7 -50.7 -41.5 -46.2 -46.1 -46.8	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-20.4 -26.1 -19.0 -20.9 -17.4 -17.7 -25.7 -16.5 -21.2 -21.1 -21.8	Notes
(GHz) cow Chann 12.53 5.00 7.51 12.53 15.09 Nid Chann 15.21 5.05 7.58 10.13 12.66 Nigh Chann 10.23 15.37	(dBm) el (2510MHz) -70.8 -65.4 -62.7 -70.8 -71.4 el (2535MHz) -71.9 -65.1 -60.3 -69.8 -71.1 rel (2560MHz) -70.8 -71.4	(H/V) H V V V H V V V V H H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -12.8 -15.3 -9.1 -13.3 -11.3 -11.3 -11.8 -14.8 -6.6 -13.5 -13.5 -13.5 -13.5 -14.1 -11.2	33.6 36.9 35.9 33.6 32.2 31.9 36.9 35.9 33.7 33.5 33.7 33.5	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	45.4 -51.1 -44.0 -45.9 -42.7 -50.7 -41.5 -46.1 -46.1 -46.8 -41.8	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-20.4 -26.1 -19.0 -20.9 -17.4 -17.7 -25.7 -16.5 -21.2 -21.1 -21.8 -16.8	Notes
(GHz) ow Chann 12.53 5.00 7.51 12.53 15.09 Nid Chann 15.21 5.05 7.58 10.13 12.66 Iigh Chann 10.23	(dBm) el (2510MHz) -70.8 -65.4 -62.7 -70.8 -71.4 -71.9 -65.1 -60.3 -69.8 -71.1 -70.8 -71.1 -69.8 -71.1 -70.8	(H/V) H V V V V H V V V V H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -12.8 -15.3 -9.1 -13.3 -11.3 -11.8 -14.8 -6.6 -13.5 -13.5 -13.5 -13.5 -14.1	33.6 36.9 35.9 33.6 32.2 31.9 36.9 35.9 33.7 33.5 33.7	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	45.4 -51.1 -44.0 -45.9 -42.7 -50.7 -41.5 -46.2 -46.1 -46.8	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-20.4 -26.1 -19.0 -20.9 -17.4 -17.7 -25.7 -16.5 -21.2 -21.1 -21.8	Notes

Page 896 of 929

9.4.5. LTE BAND 12

QPSK EIRP POWER FOR LTE BAND 12 (10.0MHZ BANDWIDTH)

<u>ıt:</u>	stitution, an		e-amplifer hamber H - EIRP @ TX Ant End (dBm)	Filte	Filter er Attenuator	EIRP	EIRP	Limit	Notes
nt: lorn T59 Sub Chamber Chamber H GA reading (dBm) I4MHz) -82.1 -79.3	T Wang EUT only LTE Band 12, estitution, an er Ant. Pol. (H/V) H	nd 8ft SMA Ca Pro 3m C Distance	e-amplifer hamber H - EIRP @ TX Ant End (dBm)	I I		EIRP			Notes
nt: lorn T59 Sub Chambe Chamber H GA reading (dBm) MMHz) -82.1 -79.3	EUT only LTE Band 12, estitution, an er Ant. Pol. (H/V) H	nd 8ft SMA Ca Pro 3m C Distance	e-amplifer hamber H - EIRP @ TX Ant End (dBm)	I I		EIRP			Notes
n <u>t:</u> forn T59 Sub Chambe Chamber H Chamber H SA reading (dBm) MMHz) -82.1 -79.3	LTE Band 12, estitution, an r Ant. Pol. (H/V) H	nd 8ft SMA Ca Pro 3m C Distance	e-amplifer hamber H - EIRP @ TX Ant End (dBm)	I I		EIRP			Notes
nt: orn T59 Sub Chambe Chamber H Chamber H GA reading (dBm) MMHz) -82.1 -79.3	Ant. Pol. (H/V)	nd 8ft SMA Ca Pro 3m C Distance	e-amplifer hamber H - EIRP @ TX Ant End (dBm)	I I		EIRP			Notes
Chambe Chamber H Chamber H SA reading (dBm) ¹⁴ MHz) -79.3	Ant. Pol. (H/V)	Pre 3m C Distance	e-amplifer hamber H - EIRP @ TX Ant End (dBm)	I I		EIRP			Notes
Chamber H Chamber H GA reading (dBm) ^{14MHz)} -79.3	Ant. Pol. (H/V)	Pre 3m C Distance	e-amplifer hamber H - EIRP @ TX Ant End (dBm)	I I		EIRP			Notes
Chamber H SA reading (dBm) (4MHz) -82.1 -79.3	Ant. Pol. (H/V)	3m C Distance	EIRP @ TX Ant End (dBm)	I I		EIRP			Notes
CA reading (dBm) (4MHz) -82.1 -79.3	(H/V) H	Distance	EIRP @ TX Ant End (dBm)	I I		EIRP		Delta	Notes
(dBm) 4MHz) -82.1 -79.3	(H/V) H		Ant End (dBm)	Preamp	Attenuator	EIRP	Limit	Delta	Notes
(dBm) 4MHz) -82.1 -79.3	(H/V) H		Ant End (dBm)	Preamp	Attenuator	EIRP	Limit	Delta	Notes
4MHz) -82.1 -79.3	Н	3.0							
-79.3		3.0	43.3						
	н		-43.3	37.3	1.0	-79.6	-13.0	-66.6	
	H	3.0 3.0	-31.5 -26.6	37.6 36.9	1.0 1.0	-68.1 -62.5	-13.0 -13.0	-55.1 -49.5	
-76.9	H	3.0	-25.9	36.7	1.0	-61.6	-13.0	-48.6	
-76.6	H	3.0	-24.4	36.6	1.0	-59.9	-13.0	-46.9	
-76.4 80 1	H	3.0	-23.0 37.1	36.3	1.0	-58.3	-13.0 13.0	-45.3 60.8	
-79.0	v	3.0	-33.6	37.7	1.0	-70.4	-13.0	-57.4	
-76.1	V	3.0	-27.4	37.0	1.0	-63.4	-13.0	-50.4	
2MHz)			-						
-81.5	Н	3.0	-42.6	37.3	1.0	-79.0	-13.0	-66.0	
-79.3	H	3.0	-36.1	37.6	1.0		-13.0	-59.7	
-76.3	Н	3.0	-26.3	36.9	1.0	-62.2	-13.0	-49.2	
-77.0	H	3.0	-25.9	36.7	1.0	-61.6	-13.0	-48.6	
-77.0	V	3.0	-33.3 -25.4	36.3	1.0	-60.7	-13.0	-57.1	
11MHz)									
-82.1	Н	3.0	-43.1	37.4	1.0	-79.5	-13.0	-66.5	
-80.7	H	3.0	-37.6	37.7	1.0	-74.3	-13.0	-61.3	
-76.9	Н	3.0	-25.8	36.7	1.0	-61.5	-13.0	-48.5	
-79.3	V	3.0	-33.7	37.9	1.0	-70.6	-13.0	-57.6	
	-80.1 -79.0 -76.1 MHz) -81.5 -79.3 -78.3 -76.4 -76.3 -76.4 -76.7 -76.7 -76.7 -76.7 -76.7 -76.7 -76.7 -76.7 -76.8 -77.0 IMHz) -82.1 -80.7 -78.0 -76.2 -76.2 -76.2 -76.9	80.1 V .79.0 V .76.1 V .81.5 H .79.3 H .76.3 H .76.3 H .76.4 H .76.7 H .77.0 H .77.0 V .882.1 H .77.0 V .80.7 H .78.8 V .77.0 V .80.7 H .76.2 H .76.2 H .76.2 H .76.9 H .76.9 V	80.1 V 3.0 .79.0 V 3.0 .79.0 V 3.0 .76.1 V 3.0 .81.5 H 3.0 .79.3 H 3.0 .78.3 H 3.0 .76.3 H 3.0 .76.3 H 3.0 .76.4 H 3.0 .76.7 H 3.0 .77.0 H 3.0 .77.0 H 3.0 .77.0 V 3.0 .77.0 V 3.0 .78.8 V 3.0 .77.0 V 3.0 .76.2 H 3.0 .76.2 H 3.0 .76.9 H 3.0 <	80.1 V 3.0 -37.1 .79.0 V 3.0 -33.6 .76.1 V 3.0 -33.6 .76.1 V 3.0 -27.4 .81.5 H 3.0 -26.3 .79.3 H 3.0 -36.1 .78.3 H 3.0 -36.1 .76.3 H 3.0 -26.3 .76.3 H 3.0 -26.3 .76.3 H 3.0 -26.3 .76.4 H 3.0 -26.3 .76.7 H 3.0 -26.3 .77.0 H 3.0 -25.9 .76.7 H 3.0 -25.9 .76.7 H 3.0 -25.4 IMHz)	80.1 V 3.0 -37.1 37.7 79.0 V 3.0 -33.6 37.7 -76.0 V 3.0 -33.6 37.7 -76.1 V 3.0 -27.4 37.0 WH2	80.1 V 3.0 -37.1 37.7 1.0 79.0 V 3.0 -33.6 37.7 1.0 -76.1 V 3.0 -33.6 37.7 1.0 -76.1 V 3.0 -27.4 37.0 1.0 -76.1 V 3.0 -27.4 37.0 1.0 -76.1 V 3.0 -27.4 37.0 1.0 -76.3 H 3.0 -36.1 37.6 1.0 -78.3 H 3.0 -30.4 37.6 1.0 -76.4 H 3.0 -26.3 36.9 1.0 -76.3 H 3.0 -26.3 36.6 1.0 -76.7 H 3.0 -25.9 36.7 1.0 -77.0 H 3.0 -25.4 36.6 1.0 -78.8 V 3.0 -25.4 36.3 1.0 -77.0 V 3.0 -25.4 36.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	80.1 V 3.0 .37.1 37.7 1.0 .73.8 .13.0 .79.0 V 3.0 .33.6 .37.7 1.0 .70.4 .13.0 .76.1 V 3.0 .23.6 .37.7 1.0 .70.4 .13.0 .76.1 V 3.0 .27.4 .37.0 1.0 .63.4 .13.0 .76.1 V 3.0 .27.4 .37.0 1.0 .63.4 .13.0 .76.1 V 3.0 .27.4 .37.0 1.0 .70.4 .13.0 .79.3 H 3.0 .36.1 .37.6 1.0 .72.7 .13.0 .78.3 H 3.0 .26.3 .36.9 1.0 .62.9 .13.0 .76.4 H 3.0 .26.3 .36.9 1.0 .61.6 .13.0 .76.7 H 3.0 .25.9 .36.7 1.0 .61.6 .13.0 .76.7 H 3.0 .25.4	80.1 V 3.0 .37.1 37.7 1.0 .73.8 .13.0 .60.8 .79.0 V 3.0 .33.6 .37.7 1.0 .70.4 .13.0 .57.4 .76.1 V 3.0 .27.4 .37.0 1.0 .63.4 .13.0 .57.4 .76.1 V 3.0 .27.4 .37.0 1.0 .63.4 .13.0 .50.4 .76.1 V 3.0 .27.4 .37.0 1.0 .63.4 .13.0 .50.4 .81.5 H 3.0 .36.1 .37.3 1.0 .79.0 .13.0 .50.7 .78.3 H 3.0 .36.1 .37.6 1.0 .62.9 .13.0 .50.9 .76.4 H 3.0 .26.3 .36.9 1.0 .62.2 .13.0 .49.2 .77.0 H 3.0 .25.9 .36.7 1.0 .61.6 .13.0 .47.1 .78.8 V 3.0

Page 897 of 929

16QAM EIRP POWER FOR LTE BAND 12 (10.0MHZ BANDWIDTH)

				titution Meas ated Chambe						
company:										
Project #:		15U21635								
ate:		09/03/15								
est Engine onfiguration		T Wang EUT only								
lode:			10MHz 16QAM							
est Equipr				LL.						
upstitution	n: Horn T59 Sub	stitution, an	IG OTT SIVIA Ca	ible						
		1								1
	Chamb	er	Pr	e-amplifer		Filter			Limit	
	Bm Chamber H	Ţ	3m C	hamber H 🗸	Filte	r	-	EIRP		•
			I							
	1		1	1 1		1			1 1	
				EIRP @ TX						
requency	-	Ant. Pol.	Distance	Ant End	Preamp	Attenuator	EIRP	Limit	Delta	Notes
(GHz)	(dBm)	(H/V)		(dBm)						
ow Channe 1.37	-81.8	Н	3.0	-43.0	37.3	1.0	-79.3	-13.0	-66.3	
2.09	-80.7	Н	3.0	-37.7	37.7	1.0	-74.4	-13.0	-61.4	
2.80	-78.9	H	3.0	-32.7	37.7	1.0	-69.4	-13.0	-56.4	
6.34 3.48	-76.2 -79.1	H V	3.0 3.0	-24.0 -31.9	36.6 37.7	1.0 1.0	-59.6 -68.6	-13.0 -13.0	-46.6 -55.6	
4.23	-75.6	V	3.0	-26.9	37.0	1.0	-62.9	-13.0	-49.9	
4.93 5.62	-75.9 -77.2	V V	3.0 3.0	-25.8 -26.1	36.9 36.7	1.0 1.0	-61.7 -61.8	-13.0 -13.0	-48.7 -48.8	
7.04	-77.7	v	3.0	-25.4	36.4	1.0	-60.8	-13.0	-47.8	
lid Channel	(782MHz)									
2.09	-80.3	Н	3.0	-37.2	37.7	1.0	-74.0	-13.0	-61.0	
2.85	-79.5	Н	3.0	-32.8	37.9	1.0	-69.7	-13.0	-56.7	
3.52	-77.9 -76.5	H	3.0 3.0	-30.1 -27.9	37.6 37.0	1.0 1.0	-66.7 -63.9	-13.0 -13.0	-53.7 -50.9	
4.94	-76.5	Н	3.0	-26.7	36.9	1.0	-62.5	-13.0	-49.5	
5.66	-77.1	H	3.0	-26.0	36.7	1.0	-61.7	-13.0	-48.7	
7.09	-77.2 -82.3	H V	3.0 3.0	-23.8 -43.0	36.3 37.4	1.0 1.0	-59.1 -79.4	-13.0 -13.0	-46.1 -66.4	
6.37	-76.5	V	3.0	-24.3	36.5	1.0	-59.8	-13.0	-46.8	
igh Channe	l (711MHz)									
1.44	-82.1	Н	3.0	-43.0	37.5	1.0	-79.5	-13.0	-66.5	
2.82	-79.2 -75.9	H	3.0	-32.8	37.8 37.0	1.0 1.0	-69.6 -63.3	-13.0	-56.6	
4.28	-75.9	H	3.0 3.0	-27.3 -26.2	37.0	1.0 1.0	-63.3	-13.0 -13.0	-50.3 -49.0	
4.98	-76.6	Н	3.0	-24.3	36.5	1.0	-59.8	-13.0	-46.8	
6.37	-76.7	H V	3.0 3.0	-23.3 -37.2	36.3 37.7	1.0 1.0	-58.6 -73.9	-13.0 -13.0	-45.6 -60.9	
6.37 7.10	80.2	v					-67.2	-13.0		
6.37	-80.2 -77.9	V	3.0	-30.6	37.6	1.0	-01.2	-15.0	-54.2	

Page 898 of 929

9.4.6. LTE BAND 17

QPSK EIRP POWER FOR LTE BAND 17 (10.0MHZ BANDWIDTH)

				titution Meas ated Chambe						
Company: Project #: Date:		15U21635 09/03/15								
Fest Engin Configurat Mode:	eer: on:	T Wang EUT only	10MHz QPSK							
<u>Fest Equip</u> Substitutio	<u>nent:</u> n: Horn T59 Sub Chamb			ble e-amplifer		Filter			Limit	
	Champ	er		o ampinor		Filler			Limit	
Г	3m Chamber H	•	3m C	hamber H 🖵	Filte	r	•	EIRP		•
Frequenc	/ SA reading	, Ant. Pol.	3m C Distance	EIRP @ TX Ant End	Filte	Attenuator	EIRP	EIRP	Delta	• Notes
Frequenc (GHz)	/ SA reading (dBm)	▼ Ant. Pol. (H/V)		EIRP @ TX						v
Frequenc	/ SA reading (dBm)			EIRP @ TX Ant End						Notes
Frequenc (GHz) Aid Channe 2.87 3.52	/ SA reading (dBm) (710MHz) -78.6 -77.8	(H/V) Н Н	Distance 3.0 3.0	EIRP @ TX Ant End (dBm) -31.8 -29.9	Preamp 37.9 37.6	Attenuator	EIRP -68.7 -66.5	Limit -13.0 -13.0	Delta -55.7 -53.5	Notes
Frequenc (GHz) Aid Channe 2.87 3.52 4.94	/ SA reading (dBm) (710MHz) -78.6 -77.8 -76.5	(H/V) H H H	Distance	EIRP @ TX Ant End (dBm) -31.8 -29.9 -26.6	Preamp 37.9 37.6 36.9	Attenuator 1.0 1.0 1.0	EIRP -68.7 -66.5 -62.5	Limit -13.0 -13.0 -13.0	Delta -55.7 -53.5 -49.5	Notes
Frequenc (GHz) Aid Channe 2.87 3.52 4.94 5.68	/ SA reading (dBm) (710MHz) 77.8 77.8 76.5 77.7	(H/V) H H H H	Distance 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -31.8 -29.9 -26.6 -26.5	Preamp 37.9 37.6 36.9 36.7	Attenuator 1.0 1.0 1.0 1.0	-68.7 -66.5 -62.5 -62.2	Limit -13.0 -13.0 -13.0 -13.0 -13.0	Delta -55.7 -53.5 -49.5 -49.2	Notes
Frequenc (GHz) Aid Channe 2.87 3.52 4.94	/ SA reading (dBm) (710MHz) -78.6 -77.8 -76.5	(H/V) H H H	Distance	EIRP @ TX Ant End (dBm) -31.8 -29.9 -26.6	Preamp 37.9 37.6 36.9	Attenuator 1.0 1.0 1.0	EIRP -68.7 -66.5 -62.5	Limit -13.0 -13.0 -13.0	Delta -55.7 -53.5 -49.5	Notes
Frequenc (GHz) Aid Channe 2.87 3.52 4.94 5.68 6.37	X SA reading (dBm) (710MHz) -78.6 -77.8 -76.5 -77.7 -76.5	(H/V) H H H H	Distance	EIRP @ TX Ant End (dBm) -31.8 -29.9 -26.6 -26.5 -24.2 -23.2 -42.3	Preamp 37.9 37.6 36.9 36.7 36.5	Attenuator 1.0 1.0 1.0 1.0 1.0	EIRP -68.7 -66.5 -62.5 -62.2 -59.8 -58.5 -58.5 -58.5	Limit -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Delta -55.7 -53.5 -49.5 -49.2 -46.8	Notes
Frequenc (GHz) Mid Channe 2.87 3.52 4.94 5.68 6.37 7.14	/ SA reading (dBm) (710MHz) -78.6 -77.8 -76.5 -76.5 -76.7	(H/V) H H H H H	Distance 3.0 3.0 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -31.8 -29.9 -26.6 -26.5 -24.2 -23.2	Preamp 37.9 37.6 36.9 36.7 36.5 36.3	Attenuator 1.0 1.0 1.0 1.0 1.0 1.0	EIRP -68.7 -66.5 -62.5 -62.2 -59.8 -58.5	-13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Delta -55.7 -53.5 -49.5 -49.2 -46.8 -45.5	Notes

Page 899 of 929

16QAM EIRP POWER FOR LTE BAND 17 (10.0MHZ BANDWIDTH)

				titution Measu ated Chambe						
Company:										
Project #:		15U21635								
Date:		09/03/15								
Test Engin		T Wang								
Configurati		EUT only								
Node:		LIE Band 17,	10MHz 16QAM	1						
Test Equip	nont:									
	n: Horn T59 Sub	stitution an	d 8ft SMA Ca	ble						
		· · · · · ·								
	Chambo	er	Pr	e-amplifer		Filter			Limit	
		er			Filte				Limit	
1	Chambo Bm Chamber H	er •		re-amplifer Chamber H 🖵	Filte		•	EIRP	Limit	•
:		er T			Filte		-	EIRP	Limit	·
:		er T		Chamber H 🚽	Filte		•	EIRP	Limit	•
	3m Chamber H	er • Ant. Pol.					EIRP	EIRP	Limit	• Notes
Frequenc	Bm Chamber H	T Ant. Pol.	3m C	EIRP @ TX Ant End	Filte	r	EIRP	I		• Notes
	3m Chamber H / SA reading (dBm)	·	3m C	Chamber H		r	EIRP	I		• Notes
Frequenc (GHz) Mid Channe 2.12	Bm Chamber H / SA reading (dBm) (710MHz) -80.3	Ant. Pol. (H/V)	3m C Distance	EIRP @ TX Ant End (dBm)	Preamp 37.7	r Attenuator	-73.9	Limit	Delta	• Notes
Frequenc (GHz) Mid Channe 2.12 2.84	M Chamber H	Ant. Pol. (H/V) H H	3m C Distance	EIRP @ TX Ant End (dBm)	Preamp 37.7 37.8	Attenuator	-73.9 -69.3	Limit -13.0 -13.0	Delta -60.9 -56.3	v Notes
Frequenc (GHz) Mid Channe 2.12 2.84 4.96	8m Chamber H / SA reading (dBm) (710MHz) -78.9 -75.7	Ant. Pol. (H/V) H H H	3m C Distance	EIRP @ TX Ant End (dBm) -37.2 -32.4 -25.8	Preamp 37.7 37.8 36.9	Attenuator	-73.9 -69.3 -61.7	Limit	Delta -60.9 -56.3 -48.7	• Notes
Frequenc; (GHz) Mid Channe 2.12 2.84 4.96 5.71	M Chamber H / SA reading (dBm) (710MHz) -80.3 -78.9 -75.7 -76.7	Ant. Pol. (H/V) H H H H	3m C Distance	EIRP @ TX Ant End (dBm) -37.2 -32.4 -25.8 -25.5	Preamp 37.7 37.8 36.9 36.7	Attenuator	-73.9 -69.3 -61.7 -61.2	Limit	Delta -60.9 -56.3 -48.7 -48.2	Notes
Frequence (GHz) Mid Channe 2.12 2.84 4.96 5.71 7.07	Bm Chamber H / SA reading (dBm) (710MHz) 	• Ant. Pol. (H/V) H H H H H	3m C Distance	EIRP @ TX Ant End (dBm) -37.2 -32.4 -25.8 -25.5 -23.3	Preamp 37.7 37.8 36.9 36.7 36.3	Attenuator	-73.9 -69.3 -61.7 -61.2 -58.6	-13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Delta -60.9 -56.3 -48.7 -48.2 -45.6	• Notes
Frequenc: (GHz) Mid Channe 2.12 2.84 4.96 5.71 7.07 1.41	M Chamber H SA reading (dBm) (710MHz) -76.7 -76.7 -76.6 -81.8	• Ant. Pol. (H/V) H H H H H V	3m C Distance 3.0 3.0 3.0 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -37.2 -32.4 -25.8 -23.3 -42.5	Preamp 37.7 37.8 36.9 36.7 36.3 37.4	Attenuator	-73.9 -69.3 -61.7 -61.2 -58.6 -78.9	-13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Delta -60.9 -56.3 -48.7 -48.2 -45.6 -65.9	• Notes
Frequence (GHz) Mid Channe 2.12 2.84 4.96 5.71 7.07	Bm Chamber H / SA reading (dBm) (710MHz) 	• Ant. Pol. (H/V) H H H H H	3m C Distance	EIRP @ TX Ant End (dBm) -37.2 -32.4 -25.8 -25.5 -23.3	Preamp 37.7 37.8 36.9 36.7 36.3	Attenuator	-73.9 -69.3 -61.7 -61.2 -58.6	-13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Delta -60.9 -56.3 -48.7 -48.2 -45.6	v Notes

Page 900 of 929

9.4.7. LTE BAND 25

QPSK EIRP POWER FOR LTE BAND 25 (20.0MHZ BANDWIDTH)

				titution Meas ated Chambe						
Compan Project :		15U21635								
ate:	. .	09/03/15								
	gineer:	T Wang								
Configu <i>I</i> lode:	ration:	EUT only	20MHz QPSK							
	uipment:	LTE Danu 23,								
ubstitu	ition: Horn T59 Sul	bstitution, ar	nd 8ft SMA Ca	ible						
	Chambe	r	Pre	-amplifer		Filter			Limit	
	3m Chamber H	•	3m Cł	namber H 🗸	Filter	r .	-	EIRP	-	
				EIRP @ TX						
Freque (GHz	z) (dBm)	Ant. Pol. (H/V)	Distance	Ant End (dBm)	Preamp	Attenuator	EIRP	Limit	Delta	Notes
	nnel (1860MHz)		2.0	45.0	27.4	4.0	50.0	42.0	20.2	
3.70 5.56		H H	3.0 3.0	-15.9 -15.4	37.4 36.7	1.0 1.0	-52.3 -51.1	-13.0 -13.0	-39.3 -38.1	
7.44		H	3.0	-14.7	36.0	1.0	-49.7	-13.0	-36.7	
13.02		Н	3.0	-12.9	33.4	1.0	-45.3	-13.0	-32.3	
16.76		H V	3.0	-12.2	28.4	1.0	-39.6	-13.0	-26.6	
9.26		V	3.0 3.0	-14.5 -14.3	34.3	1.0 1.0	-47.8 -47.0	-13.0 -13.0	-34.8 -34.0	
14.86		v	3.0	-10.5	32.4	1.0	-41.9	-13.0	-28.9	
	nel (1882.5MHz)	Į								
Aid Char		Н	3.0	-16.3	37.4	1.0	-52.6	-13.0	-39.6	
	-66.6	H	3.0	-15.5	36.7	1.0	-51.2	-13.0	-38.2	
3.75 5.68	70.7	H	3.0	-14.7	34.2	1.0	-47.9	-13.0	-34.9	
3.75 5.68 9.45		H	3.0	-13.8	33.8	1.0	-46.6 -42.3	-13.0	-33.6	
3.75 5.68 9.45 11.32	2 -71.0						-4/.5	-13.0	-29.3 -26.8	
3.75 5.68 9.45 11.32 15.06	2 -71.0 5 -71.1	H	3.0	-11.0 -12.9	32.2	1.0		_13.0		
3.75 5.68 9.45 11.32	2 -71.0 6 -71.1 8 -73.2	H H V	3.0 3.0 3.0	-11.0 -12.9 -13.3	32.2 27.9 35.9	1.0 1.0 1.0	-39.8	-13.0 -13.0	-35.2	
3.75 5.68 9.45 11.32 15.06 16.98	2 -71.0 6 -71.1 8 -73.2 -66.9	Н	3.0	-12.9	27.9	1.0				
3.75 5.68 9.45 11.32 15.06 16.98 7.53 13.17	2 -71.0 5 -71.1 8 -73.2 5 -66.9 7 -70.8	H V	3.0 3.0	-12.9 -13.3	27.9 35.9	1.0 1.0	-39.8 -48.2	-13.0	-35.2	
3.75 5.68 9.45 11.32 15.00 16.98 7.53 13.17	2 -71.0 5 -71.1 8 -73.2 -66.9 7 -70.8 unnel (1905MHz)	H V	3.0 3.0	-12.9 -13.3	27.9 35.9	1.0 1.0	-39.8 -48.2	-13.0	-35.2	
3.75 5.68 9.45 11.32 15.06 16.98 7.53 13.17 ligh Cha 3.79 5.69	2 -71.0 5 -71.1 3 -73.2 5 -66.9 7 -70.8 10 -60.6 6 -66.9	H V V H	3.0 3.0 3.0 3.0 3.0 3.0	-12.9 -13.3 -12.6 -12.6 -15.7	27.9 35.9 33.3 37.3 36.7	1.0 1.0 1.0 1.0 1.0	-39.8 -48.2 -44.9 -48.9 -51.4	-13.0 -13.0 -13.0 -13.0 -13.0	-35.2 -31.9 -35.9 -38.4	
3.75 5.68 9.45 11.32 15.00 16.98 7.53 13.17 iigh Cha 3.79 5.69 9.50	2 -71.0 5 -71.1 3 -73.2 5 -66.9 7 -70.8 5 -66.9 7 -70.8 5 -66.9 5 -66.9 5 -66.9 5 -66.9 5 -69.8	H V V H H	3.0 3.0 3.0 3.0 3.0 3.0 3.0	-12.9 -13.3 -12.6 -12.6 -15.7 -13.8	27.9 35.9 33.3 37.3 36.7 34.1	1.0 1.0 1.0 1.0 1.0 1.0 1.0	-39.8 -48.2 -44.9 -48.9 -51.4 -46.9	-13.0 -13.0 -13.0 -13.0 -13.0	-35.2 -31.9 -35.9 -38.4 -33.9	
3.75 5.68 9.45 11.32 15.00 16.98 7.53 13.17 ligh Cha 3.79 5.69 9.50 11.46	2 71.0 5 71.1 3 73.2 66.9 7 70.8 10 60.6 10 60.6 10 66.9 1 60.6 1 69.8 5 71.4	H V V H H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	-12.9 -13.3 -12.6 -12.6 -15.7 -13.8 -14.1	27.9 35.9 33.3 37.3 36.7 34.1 33.8	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-39.8 -48.2 -44.9 -48.9 -51.4 -46.9 -46.9	-13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	-35.2 -31.9 -35.9 -38.4 -33.9 -33.9	
3.75 5.68 9.45 11.32 15.00 16.98 7.53 13.17 iigh Cha 3.79 5.69 9.50 11.46 13.36	2 -71.0 5 -71.1 8 -73.2 6 -66.9 7 -70.8 1005MHz) 6 -60.6 9 -69.8 5 -71.4 5 -70.8	H V V H H H H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	-12.9 -13.3 -12.6 -12.6 -15.7 -13.8 -14.1 -12.1	27.9 35.9 33.3 37.3 36.7 34.1 33.8 33.2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-39.8 -48.2 -44.9 -48.9 -51.4 -46.9 -46.9 -44.3	-13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	-35.2 -31.9 -35.9 -38.4 -33.9 -33.9 -31.3	
3.75 5.68 9.45 11.32 15.00 16.98 7.53 13.17 ligh Cha 3.79 5.69 9.50 11.46	2 -71.0 5 -71.1 3 -73.2 5 -66.9 7 -70.8 5 -70.8 5 -70.8 5 -71.4 5 -70.8 5 -	H V V H H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	-12.9 -13.3 -12.6 -12.6 -15.7 -13.8 -14.1	27.9 35.9 33.3 37.3 36.7 34.1 33.8	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-39.8 -48.2 -44.9 -48.9 -51.4 -46.9 -46.9	-13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	-35.2 -31.9 -35.9 -38.4 -33.9 -33.9	

Page 901 of 929

16QAM EIRP POWER FOR LTE BAND 25 (20.0MHZ BANDWIDTH)

				titution Measu ated Chambe						
company roject # ate: est Eng onfigura lode:	ineer:	15U21635 09/03/15 T Wang EUT only LTE Band 25,	20MHz 16QAM							
<u>est Equ</u> ubstitut	i <u>pment:</u> ion: Horn T59 Su	Ibstitution, ar	ıd 8ft SMA Ca	ble						
	Chamb	er	Pr	e-amplifer		Filter			Limit	
Ī	3m Chamber H	•	3m C	hamber H 🚽	Filte	r	-	EIRP		•
Frequer (GHz)	(dBm)	Ant. Pol. (H/V)	Distance	EIRP @ TX Ant End (dBm)	Preamp	Attenuator	EIRP	Limit	Delta	Notes
	nel (1860MHz)			10.1	~~ .		50 F	40.0	00.5	
3.70 5.59	-64.1 -66.3	H	3.0 3.0	-16.1 -15.3	37.4 36.7	1.0 1.0	-52.5 -51.0	-13.0 -13.0	-39.5 -38.0	
14.86	-70.4	H	3.0	-10.5	32.4	1.0	-41.9	-13.0	-28.9	
7.44	-68.3	V	3.0	-14.8	36.0	1.0	-49.8	-13.0	-36.8	
9.31	-70.7	V	3.0	-15.2	34.3	1.0	-48.5	-13.0	-35.5	
11.15 13.02	-71.8 -70.9	V V	3.0 3.0	-15.2 -12.9	33.8 33.4	1.0 1.0	-48.0 -45.3	-13.0 -13.0	-35.0 -32.3	
16.71	-72.3	v	3.0	-11.6	28.5	1.0	-39.1	-13.0	-26.1	
lid Chanr	iel (1882.5MHz)									
3.74	-63.5	H	3.0	-15.5	37.4	1.0	-51.9	-13.0	-38.9	
5.64 11.30	-65.2 -72.2	H	3.0 3.0	-14.1 -15.0	36.7 33.8	1.0 1.0	-49.8 -47.8	-13.0 -13.0	-36.8 -34.8	
7.56	-12.2	V N	3.0	-13.0	35.9	1.0	-47.0 -48.6	-13.0	-34.0 -35.6	
9.45	-70.4	V	3.0	-14.8	34.2	1.0	-48.0	-13.0	-35.0	
13.16	-71.3 -70.9	V V	3.0 3.0	-13.2	33.3	1.0 1.0	-45.4	-13.0	-32.4	
15.09 16.93	-70.9 -73.0	V	3.0 3.0	-10.8 -12.3	32.2 28.0	1.0 1.0	-42.0 -39.3	-13.0 -13.0	-29.0 -26.3	
iah Chan	nel (1905MHz)									
7.60	-67.5	Н	3.0	-13.5	35.9	1.0	-48.4	-13.0	-35.4	
17.15	-71.8	H	3.0	-11.4	27.5	1.0	-37.9	-13.0	-24.9	
3.79	-61.0	V V	3.0	-13.1 15.4	37.3	1.0	-49.4 51.1	-13.0 13.0	-36.4 38.1	
5.69 9.50	-66.6 -70.2	v V	3.0 3.0	-15.4 -14.6	36.7 34.1	1.0 1.0	-51.1 -47.7	-13.0 -13.0	-38.1 -34.7	
11.46	-71.7	V	3.0	-15.0	33.8	1.0	-47.8	-13.0	-34.8	
	-71.1	V V	3.0 3.0	-12.7	33.2	1.0	-44.9	-13.0	-31.9	
13.36 15.25			2.0	-11.6	31.8	1.0	-42.4	-13.0	-29.4	

Page 902 of 929

9.4.8. LTE BAND 26

QPSK EIRP POWER FOR LTE BAND 26 (10.0MHZ BANDWIDTH)

				titution Measu ated Chamber						
Company:										
Project #:		15U21635								
Date: Test Engine		09/03/15 T Wang								
Configuratio		EUT only								
Mode:			90S), 10MHz Q	PSK						
		r	Pre	ble e-amplifer		Filter			Limit	
31	Chambe n Chamber H	r •		e-amplifer hamber H 🖵	Filter	Filter	•	EIRP	Limit	•
3n Frequency (GHz)	Chambe			e-amplifer	Filter		EIRP	EIRP	Limit	Notes
Frequency (GHz) Mid Channel (Chambe n Chamber H SA reading (dBm) 819MHz)	Ant. Pol. (H/V)	3m C Distance	e-amplifer hamber H - EIRP @ TX Ant End (dBm)	Preamp	Attenuator	EIRP	Limit	Delta	Notes
Frequency (GHz) Mid Channel (3.24	Chambe n Chamber H SA reading (dBm) 819MHz) -78.4	Ant. Pol. (H/V)	3m C Distance	EIRP @ TX Ant End (dBm)	Preamp 37.9	Attenuator	EIRP -67.6	Limit	Delta	Notes
Frequency (GHz) Mid Channel (3.24 7.36	Chamber n Chamber H SA reading (dBm) 819MHz) -78.4 -77.1	Ant. Pol. (H/V)	3m C Distance	EIRP @ TX Ant End (dBm) -30.7 -23.4	Preamp 37.9 36.1	Attenuator	EIRP -67.6 -58.5	Limit -13.0 -13.0	Delta	Notes
Frequency (GHz) Mid Channel (3.24 7.36 1.65	Chambe n Chamber H SA reading (dBm) 819MHz) -78.4	Ant. Pol. (H/V)	3m C Distance	EIRP @ TX Ant End (dBm) -30.7 -23.4 -40.8	Preamp 37.9 36.1 37.7	Attenuator	EIRP -67.6 -58.5 -77.6	Limit -13.0 -13.0 -13.0	Delta	Notes
Frequency (GHz) Aid Channel (3.24 7.36	Chamber n Chamber H SA reading (dBm) 819MHz) -78.4 -77.1 -81.5	Ant. Pol. (H/V) H H V	3m C Distance	EIRP @ TX Ant End (dBm) -30.7 -23.4	Preamp 37.9 36.1	Attenuator 1.0 1.0	EIRP -67.6 -58.5	Limit -13.0 -13.0 -13.0 -13.0 -13.0	Delta	Notes
Frequency (GHz) Mid Channel (3.24 7.36 1.65 2.46 4.08 4.91	Chamber n Chamber H SA reading (dBm) 819MHz) -78.4 -77.1 -78.9 -76.9 -76.5	Ant. Pol. (H/V) H H V V V V	3m C Distance 3.0 3.0 3.0 3.0 3.0 3.0	e-amplifer hamber H ↓ EIRP @ TX Ant End (dBm) -30.7 -23.4 -40.8 -34.8 -28.4 -26.5	Preamp 37.9 36.1 37.7 37.0 37.1 36.9	Attenuator 1.0 1.0 1.0 1.0 1.0 1.0	EIRP -67.6 -58.5 -77.6 -70.9 -64.5 -62.4	Limit -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Delta	Notes
Frequency (GHz) Mid Channel (3.24 7.36 1.65 2.46 4.08	Chamber n Chamber H SA reading (dBm) 819MHz) -78.4 -77.1 -81.5 -79.0 -76.9	Ant. Pol. (H/V) H H V V V	3m C Distance	EIRP @ TX Ant End (dBm) -30.7 -23.4 -40.8 -34.8 -28.4	Preamp 37.9 36.1 37.7 37.0 37.1	Attenuator	EIRP -67.6 -58.5 -77.6 -70.9 -64.5	-13.0 -13.0 -13.0 -13.0 -13.0	Delta	Notes

Page 903 of 929

16QAM EIRP POWER FOR LTE BAND 26 (10.0MHZ BANDWIDTH)

			-	atitution Measu iated Chambe						
Company:										
Project #:		15U21635								
Date:		09/03/15								
Test Engir		T Wang								
Configurat		EUT only								
Node:			90S), 10MHz 1	6QAM						
			-							
Fest Equip	oment:									
Substitutio	on: Horn T59 Sub	stitution, an	d 8ft SMA Ca	able						
	Ob and b		Pr	e-amplifer		Filter	1		1. See 16	
	Chambe	ər	Pr	e-amplifer		Filter			Limit	
r	Chambe 3m Chamber H			e-amplifer Chamber H 🖵	Filte		_	EIRP	Limit	Ţ
Γ		er •			Filte		•	EIRP	Limit	•
					Filte		-	EIRP	Limit	Y
				Chamber H 🖵	Filte		•	EIRP	Limit	•
	3m Chamber H						EIRP	EIRP	Limit	v
Frequenc	3m Chamber H	• Ant. Pol.	3m C	EIRP @ TX	Filte	r j	EIRP			• Notes
Frequenc (GHz)	3m Chamber H	·	3m C	EIRP @ TX		r j	EIRP			• Notes
Frequence (GHz) Mid Channe 3.26	3m Chamber H	• Ant. Pol.	3m C	EIRP @ TX Ant End (dBm)	Preamp 37.9	r j	-66.7	Limit		• Notes
Frequenc (GHz) Aid Channe 3.26 5.71	3m Chamber H SA reading (dBm) el (819MHz) -77.6 -77.5	Ant. Pol. (H/V)	3m C Distance	EIRP @ TX Ant End (dBm)	Preamp 37.9 36.7	rAttenuator	-66.7 -62.0	Limit -13.0 -13.0	Delta -53.7 -49.0	Votes
Frequenc (GHz) Aid Channe 3.26 5.71 1.61	3m Chamber H SA reading (dBm) el (819MHz) -77.6 -77.5 -81.4	Ant. Pol. (H/V) H H V	3m C Distance 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -29.8 -26.3 -41.0	Preamp 37.9 36.7 37.7	r	-66.7 -62.0 -77.7	Limit -13.0 -13.0 -13.0	Delta -53.7 -49.0 -64.7	Notes
Frequence (GHz) Mid Channe 3.26 5.71 1.61 2.46	3m Chamber H 2y SA reading (dBm) -1 (819MHz) -77.6 -77.5 -81.4 -79.0	Ant. Pol. (H/V) H H V V	3m C Distance	EIRP @ TX Ant End (dBm) -29.8 -26.3 -41.0 -34.9	Preamp 36.7 37.9 36.7 37.7 37.0	Attenuator	-66.7 -62.0 -77.7 -71.0	Limit	-53.7 -49.0 -64.7 -58.0	Notes
Frequence (GHz) Mid Channe 3.26 5.71 1.61 2.46 4.09	3m Chamber H SA reading (dBm) el (819MHz) -77.6 -77.5 -81.4 -79.0 -76.9	• Ant. Pol. (H/V) H H V V V V	3m C Distance 3.0 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -29.8 -26.3 -41.0 -34.9 -28.4	Preamp 37.9 36.7 37.7 37.0 37.1	r	-66.7 -62.0 -77.7 -71.0 -64.4	-13.0 -13.0 -13.0 -13.0 -13.0	Delta -53.7 -49.0 -64.7 -58.0 -51.4	• Notes
Frequence (GHz) Aid Channe 3.26 5.71 1.61 2.46 4.09 4.94	3m Chamber H SA reading (dBm) el (819MHz) -77.6 -77.5 -81.4 -79.0 -76.9 -76.3	Ant. Pol. (H/V) H H V V V V V	3m C Distance 3.0 3.0 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -29.8 -26.3 -41.0 -34.9 -28.4 -26.2	Preamp 37.9 36.7 37.7 37.0 37.1 36.9	r Attenuator 1.0 1.0 1.0 1.0 1.0	-66.7 -62.0 -77.7 -71.0 -64.4 -62.1	Limit -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Delta -53.7 -49.0 -64.7 -58.0 -51.4 -49.1	Notes
Frequence (GHz) Mid Channe 3.26 5.71 1.61 2.46 4.09	3m Chamber H SA reading (dBm) el (819MHz) -77.6 -77.5 -81.4 -79.0 -76.9	• Ant. Pol. (H/V) H H V V V V	3m C Distance 3.0 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -29.8 -26.3 -41.0 -34.9 -28.4	Preamp 37.9 36.7 37.7 37.0 37.1	r	-66.7 -62.0 -77.7 -71.0 -64.4	-13.0 -13.0 -13.0 -13.0 -13.0	Delta -53.7 -49.0 -64.7 -58.0 -51.4	Notes

Page 904 of 929

9.4.9. LTE BAND 41

QPSK EIRP POWER FOR LTE BAND 41 (20.0MHZ BANDWIDTH)

			-	titution Meas ated Chamb						
Company:										
Project #:		15U21635								
Date:		09/04/15								
Test Engi		T Wang								
Configura		EUT only								
Node:		LTE Band 41,	20MHz QPSK							
russuidu T	on: Horn T59 Sub Chambe		Pr	e-amplifer		Filter			Limit	
	3m Chamber H		3m C	hamber H 🖕	Filte	er	-	LTEE	341 .	-
ļ		_		EIRP @ TX	1					
(GHz)	cy SA reading (dBm)	Ant. Pol. (H/V)	Distance	EIRP @ TX Ant End (dBm)	Preamp	Attenuator	EIRP	Limit	Delta	Notes
Low Chanr	cy SA reading (dBm) nel (2506MHz)	(H/V)		Ant End (dBm)	•					Notes
(GHz) ow Chanr 3.85	cy SA reading (dBm) nel (2506MHz) -62.7	(H/V) H	3.0	Ant End (dBm) -14.7	37.3	1.0	-51.0	-25.0	-26.0	Notes
(GHz) ow Chanr	cy SA reading (dBm) nel (2506MHz)	(H/V) H H V		Ant End (dBm)	37.3 36.8 36.9			-25.0 -25.0 -25.0		Notes
(GHz) ow Chanr 3.85 5.28 5.00 7.49	cy SA reading (dBm) nel (2506MHz) -62.7 -64.7 -64.1 -62.1	(H/V) H H V V	3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -14.7 -14.2 -14.0 -8.5	37.3 36.8 36.9 35.9	1.0 1.0 1.0 1.0 1.0	-51.0 -50.0 -49.8 -43.4	-25.0 -25.0 -25.0 -25.0	-26.0 -25.0 -24.8 -18.4	Notes
(GHz) -ow Chan 3.85 5.28 5.00 7.49 9.99	cy SA reading (dBm) rel (2506MHz) -62.7 -64.7 -64.1 -62.1 -70.5	(H/V) H H V V V	3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -14.7 -14.2 -14.0 -8.5 -14.3	37.3 36.8 36.9 35.9 33.7	1.0 1.0 1.0 1.0 1.0	-51.0 -50.0 -49.8 -43.4 -47.0	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-26.0 -25.0 -24.8 -18.4 -22.0	Notes
(GHz) ow Chanr 3.85 5.28 5.00 7.49	cy SA reading (dBm) nel (2506MHz) -62.7 -64.7 -64.1 -62.1	(H/V) H H V V	3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -14.7 -14.2 -14.0 -8.5	37.3 36.8 36.9 35.9	1.0 1.0 1.0 1.0 1.0	-51.0 -50.0 -49.8 -43.4	-25.0 -25.0 -25.0 -25.0	-26.0 -25.0 -24.8 -18.4	Notes
(GHz) ow Chanr 3.85 5.28 5.00 7.49 9.99 12.56 Mid Chann	cy SA reading (dBm) tel (2506MHz) -62.7 -64.7 -64.1 -62.1 -70.5 -71.2 el (2593MHz)	(H/V) H H V V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -14.7 -14.2 -14.0 -8.5 -14.3 -13.7	37.3 36.8 36.9 35.9 33.7 33.6	1.0 1.0 1.0 1.0 1.0 1.0	-51.0 -50.0 -49.8 -43.4 -47.0 -46.3	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-26.0 -25.0 -24.8 -18.4 -22.0 -21.3	Notes
(GHz) ow Chann 3.85 5.28 5.00 7.49 9.99 12.56 Mid Chann 10.37	cy SA reading (dBm) -62.7 -64.7 -64.1 -62.1 -70.5 -71.2 el (2593MHz) -71.5	(H/V) H H V V V V V H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -14.7 -14.2 -14.0 -8.5 -14.3 -13.7 -14.8	37.3 36.8 36.9 35.9 33.7 33.6 33.7	1.0 1.0 1.0 1.0 1.0 1.0 1.0	-51.0 -50.0 -49.8 -43.4 -47.0 -46.3 -47.5	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-26.0 -25.0 -24.8 -18.4 -22.0 -21.3 -22.5	Notes
(GHz) ow Chann 3.85 5.28 5.00 7.49 9.99 12.56 Mid Chann 10.37 12.95	cy SA reading (dBm) nel (2506MHz) -62.7 -64.7 -64.1 -62.1 -70.5 -71.2 el (2593MHz) -71.5 -71.6	(H/V) H V V V V H H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -14.7 -14.2 -14.0 -8.5 -14.3 -13.7 - - -14.8 -13.2	37.3 36.8 36.9 35.9 33.7 33.6 33.7 33.4	1.0 1.0 1.0 1.0 1.0 1.0 1.0	-51.0 -50.0 -49.8 -43.4 -47.0 -46.3 	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-26.0 -25.0 -24.8 -18.4 -22.0 -21.3 -21.3 -22.5 -20.6	Notes
(GHz) ow Chann 3.85 5.28 5.00 7.49 9.99 12.56 Mid Chann 10.37 12.95 15.54	cy SA reading (dBm) 1el (2506MHz) -62.7 -64.7 -64.1 -62.1 -70.5 -71.2 el (2593MHz) -71.5 -71.6 -71.8	(H/V) H V V V V H H H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -14.7 -14.2 -14.0 -8.5 -14.3 -13.7 -13.7 -14.8 -13.2 -11.6	37.3 36.8 36.9 35.9 33.7 33.6 33.7 33.4 31.2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-51.0 -50.0 -49.8 -43.4 -47.0 -46.3 	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-26.0 -25.0 -24.8 -18.4 -22.0 -21.3 -22.5 -20.6 -16.8	Notes
(GHz) ow Chann 3.85 5.28 5.00 7.49 9.99 12.56 Mid Chann 10.37 12.95	cy SA reading (dBm) nel (2506MHz) -62.7 -64.7 -64.1 -62.1 -70.5 -71.2 el (2593MHz) -71.5 -71.6	(H/V) H V V V V H H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -14.7 -14.2 -14.0 -8.5 -14.3 -13.7 - - -14.8 -13.2	37.3 36.8 36.9 35.9 33.7 33.6 33.7 33.4	1.0 1.0 1.0 1.0 1.0 1.0 1.0	-51.0 -50.0 -49.8 -43.4 -47.0 -46.3 	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-26.0 -25.0 -24.8 -18.4 -22.0 -21.3 -21.3 -22.5 -20.6	Notes
(GHz) ow Chanr 3.85 5.28 5.00 7.49 9.99 12.56 Mid Chann 10.37 12.95 15.54 5.17 7.75	cy SA reading (dBm) hel (2506MHz) -62.7 -64.7 -64.7 -62.1 -70.5 -71.2 el (2593MHz) -71.5 -71.6 -71.8 -61.7 -61.4	(H/V) H V V V V V H H H V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -14.7 -14.2 -14.0 -8.5 -14.3 -13.7 -14.8 -13.2 -11.6 -11.2	37.3 36.8 36.9 35.9 33.7 33.6 33.7 33.4 31.2 36.8	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-51.0 -50.0 -49.8 -43.4 -47.0 -46.3 -47.5 -45.6 -41.8 -47.0	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-26.0 -25.0 -24.8 -18.4 -22.0 -21.3 -22.5 -20.6 -16.8 -22.0	Notes
(GHz) ow Chanr 3.85 5.28 5.00 7.49 9.99 12.56 Mid Chann 10.37 12.95 15.54 5.17 7.75	cy SA reading (dBm) rel (2506MHz) -62.7 -64.7 -64.1 -62.1 -70.5 -71.2 el (2593MHz) -71.5 -71.6 -71.8 -61.7 -61.4 -el (2680MHz)	(H/V) H V V V V V V V V V V V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -14.7 -14.2 -14.0 -8.5 -14.3 -13.7 -14.8 -13.2 -11.6 -11.2 -7.6	37.3 36.8 36.9 35.9 33.7 33.6 33.7 33.4 31.2 36.8 35.7	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	51.0 50.0 49.8 43.4 47.0 46.3 47.5 45.6 41.8 47.0 42.3	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-26.0 -25.0 -24.8 -18.4 -22.0 -21.3 -21.3 -22.5 -20.6 -16.8 -22.0 -17.3	Notes
(GHz) ow Chann 3.85 5.08 5.00 7.49 9.99 12.56 Aid Chann 10.37 12.54 4.5.17 7.75 tigh Chann 3.71	cy SA reading (dBm) hel (2506MHz) -62.7 -64.7 -64.1 -62.1 -70.5 -71.2 el (2593MHz) -71.5 -71.6 -71.6 -71.8 -61.4 nel (2680MHz) -63.4	(H/V) H V V V V H H H H H H H H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -14.7 -14.2 -14.0 -8.5 -14.3 -13.7 -14.8 -13.2 -11.6 -11.2 -7.6 - -15.5	37.3 36.8 36.9 35.9 33.7 33.6 33.7 33.4 31.2 36.8 35.7 37.4	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-51.0 -50.0 -49.8 -43.4 -47.0 -46.3 -47.5 -45.6 -41.8 -47.0 -42.3 -51.9	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-26.0 -25.0 -24.8 -18.4 -22.0 -21.3 -22.5 -20.6 -16.8 -22.0 -17.3 -26.9	Notes
(GHz) .ow Chann 3.85 5.28 5.00 7.49 9.99 12.56 Aid Chann 10.37 12.55 15.54 5.17 7.75 tigh Chann 3.71 5.51	cy SA reading (dBm) nel (2506MHz) - 62.7 - 64.7 - 64.1 - 62.1 - 70.5 - 71.2 el (2593MHz) - 71.5 - 71.6 - 71.6 - 71.8 - 61.7 - 61.4 nel (2680MHz) - 63.4 - 64.6	(H/V) H V V V H H H V V H H H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -14.7 -14.2 -14.0 -8.5 -14.3 -13.7 -14.8 -13.2 -11.6 -11.2 -7.6 -15.5 -13.7	37.3 36.8 35.9 33.7 33.6 33.7 33.4 31.2 36.8 35.7 37.4 36.8	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-51.0 -50.0 -49.8 -43.4 -47.0 -46.3 	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-26.0 -25.0 -24.8 -18.4 -22.0 -21.3 -22.5 -20.6 -16.8 -22.0 -16.8 -22.0 -17.3 -26.9 -24.5	Notes
(GHz) ow Chann 3.85 5.08 5.00 7.49 9.99 12.56 Aid Chann 10.37 12.54 4.5.17 7.75 tigh Chann 3.71	cy SA reading (dBm) hel (2506MHz) -62.7 -64.7 -64.1 -62.1 -70.5 -71.2 el (2593MHz) -71.5 -71.6 -71.6 -71.8 -61.4 nel (2680MHz) -63.4	(H/V) H V V V V H H H H H H H H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -14.7 -14.2 -14.0 -8.5 -14.3 -13.7 -14.8 -13.2 -11.6 -11.2 -7.6 - -15.5	37.3 36.8 36.9 35.9 33.7 33.6 33.7 33.4 31.2 36.8 35.7 37.4	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-51.0 -50.0 -49.8 -43.4 -47.0 -46.3 -47.5 -45.6 -41.8 -47.0 -42.3 -51.9	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-26.0 -25.0 -24.8 -18.4 -22.0 -21.3 -22.5 -20.6 -16.8 -22.0 -17.3 -26.9	Notes

Page 905 of 929

16QAM EIRP POWER FOR LTE BAND 41 (20.0MHZ BANDWIDTH)

mpany			-	titution Measu						
mpany		UL F	remont Radi	ated Chamber	r					
	:									
ject #		15U21635								
e:		09/04/15								
	ineer:	T Wang								
nfigur: de:	ation:	EUT only	20MHz 16QAN							
ae.		LIE Dand 41,		1						
st Equ	ipment:									
ostitut	ion: Horn T59 Su	bstitution, an	d 8ft SMA Ca	ble						
	Chambe	ur i	Pre	-amplifer		Filter			Limit	
_		1		•		r neer				
	3m Chamber H	-	3m Cł	namber H 🖵	Filter	-		LTE B4	1	-
1								,		
	icy SA reading	Ant. Pol.	Distance	EIRP @ TX Ant End	Preamp	Attenuator	EIRP	Limit	Delta	Notes
equer (GHz)		(H/V)	Distance	(dBm)	Freamp	Allenuator	LIKF	LIIIIIL	Della	Notes
				(ubiii)						
v Chan	nel (2506MHz)									
3.69	nel (2506MHz) -64.0	Н	3.0	-16.1	37.4	1.0	-52.5	-25.0	-27.5	
3.69 4.60	-64.0 -63.8	Н	3.0	-14.6	37.0	1.0	-50.5	-25.0	-25.5	
3.69 4.60 6.47	-64.0 -63.8 -64.5	H V	3.0 3.0	-14.6 -12.2	37.0 36.5	1.0 1.0	-50.5 -47.7	-25.0 -25.0	-25.5 -22.7	
3.69 4.60 6.47 5.00	-64.0 -63.8 -64.5 -64.1	H V V	3.0 3.0 3.0	-14.6 -12.2 -13.9	37.0 36.5 36.9	1.0 1.0 1.0	-50.5 -47.7 -49.8	-25.0 -25.0 -25.0	-25.5 -22.7 -24.8	
3.69 4.60 6.47	-64.0 -63.8 -64.5	H V	3.0 3.0	-14.6 -12.2	37.0 36.5	1.0 1.0	-50.5 -47.7	-25.0 -25.0	-25.5 -22.7	
3.69 4.60 6.47 5.00 7.49 9.99	-64.0 -63.8 -64.5 -64.1 -63.3 -70.3	H V V V	3.0 3.0 3.0 3.0	-14.6 -12.2 -13.9 -9.7	37.0 36.5 36.9 35.9	1.0 1.0 1.0 1.0	-50.5 -47.7 -49.8 -44.6	-25.0 -25.0 -25.0 -25.0	-25.5 -22.7 -24.8 -19.6	
3.69 4.60 6.47 5.00 7.49 9.99 Chann	-64.0 -63.8 -64.5 -64.1 -63.3 -70.3 rel (2593MHz)	H V V V V	3.0 3.0 3.0 3.0 3.0 3.0	-14.6 -12.2 -13.9 -9.7 -14.2	37.0 36.5 36.9 35.9 33.7	1.0 1.0 1.0 1.0 1.0	-50.5 -47.7 -49.8 -44.6 -46.8	-25.0 -25.0 -25.0 -25.0 -25.0	-25.5 -22.7 -24.8 -19.6 -21.8	
3.69 4.60 6.47 5.00 7.49 9.99 Chanr 5.19	-64.0 -63.8 -64.5 -64.1 -63.3 -70.3 rel (2593MHz) -62.3	H V V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0	-14.6 -12.2 -13.9 -9.7 -14.2 -12.0	37.0 36.5 36.9 35.9 33.7 36.8	1.0 1.0 1.0 1.0 1.0	-50.5 47.7 49.8 44.6 46.8 47.8	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-25.5 -22.7 -24.8 -19.6 -21.8 -21.8	
3.69 4.60 6.47 5.00 7.49 9.99 Chann	-64.0 -63.8 -64.5 -64.1 -63.3 -70.3 rel (2593MHz)	H V V V V	3.0 3.0 3.0 3.0 3.0 3.0	-14.6 -12.2 -13.9 -9.7 -14.2	37.0 36.5 36.9 35.9 33.7	1.0 1.0 1.0 1.0 1.0	-50.5 -47.7 -49.8 -44.6 -46.8	-25.0 -25.0 -25.0 -25.0 -25.0	-25.5 -22.7 -24.8 -19.6 -21.8	
3.69 4.60 6.47 5.00 7.49 9.99 Chann 5.19 5.17 7.75 10.37	-64.0 -63.8 -64.5 -64.1 -63.3 -70.3 -70.3 -62.3 -60.8 -62.5 -71.1	H V V V V H V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	-14.6 -12.2 -13.9 -9.7 -14.2 -12.0 -10.3 -8.6 -14.8	37.0 36.5 36.9 35.9 33.7 36.8 36.8 35.7 33.7	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-50.5 47.7 49.8 44.6 46.8 47.8 46.1 43.4 47.5	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-25.5 -22.7 -24.8 -19.6 -21.8 -21.8 -22.8 -21.1 -18.4 -22.5	
3.69 4.60 6.47 5.00 7.49 9.99 Chanr 5.19 5.17 7.75 10.37 13.00	-64.0 -63.8 -64.5 -64.1 -63.3 -70.3 -70.3 -62.3 -60.8 -62.5 -71.1 -70.5	H V V V H V V V V V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	-14.6 -12.2 -13.9 -9.7 -14.2 -12.0 -10.3 -8.6 -14.8 -12.6	37.0 36.5 36.9 35.9 33.7 36.8 36.8 36.8 35.7 33.7 33.4	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-50.5 47.7 49.8 44.6 46.8 47.8 46.1 43.4 47.5 44.9	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-25.5 -22.7 -24.8 -19.6 -21.8 -21.8 -21.8 -21.1 -18.4 -22.5 -19.9	
3.69 4.60 6.47 5.00 7.49 9.99 Chann 5.19 5.17 7.75 10.37	-64.0 -63.8 -64.5 -64.1 -63.3 -70.3 -70.3 -62.3 -60.8 -62.5 -71.1	H V V V V H V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	-14.6 -12.2 -13.9 -9.7 -14.2 -12.0 -10.3 -8.6 -14.8	37.0 36.5 36.9 35.9 33.7 36.8 36.8 35.7 33.7	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-50.5 47.7 49.8 44.6 46.8 47.8 46.1 43.4 47.5	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-25.5 -22.7 -24.8 -19.6 -21.8 -21.8 -22.8 -21.1 -18.4 -22.5	
3.69 4.60 6.47 5.00 7.49 9.99 Chann 5.19 5.17 7.75 10.37 13.00 15.57	-64.0 -63.8 -64.5 -64.1 -63.3 -70.3 -70.3 -62.3 -60.8 -62.5 -71.1 -70.5	H V V V H V V V V V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	-14.6 -12.2 -13.9 -9.7 -14.2 -12.0 -10.3 -8.6 -14.8 -12.6	37.0 36.5 36.9 35.9 33.7 36.8 36.8 35.7 33.7 33.4 31.1	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-50.5 47.7 49.8 44.6 46.8 47.8 46.1 43.4 47.5 44.9	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-25.5 -22.7 -24.8 -19.6 -21.8 -21.8 -21.1 -18.4 -22.5 -19.9 -16.6	
3.69 4.60 6.47 5.00 7.49 9.99 Chann 5.19 5.17 7.75 10.37 13.00 15.57 h Chan 3.72	-64.0 -63.8 -64.5 -64.1 -63.3 -70.3 -70.3 -62.3 -60.8 -62.5 -71.1 -70.5 -71.8 mel (2680MHz) -63.2	H V V V V V V V V V V H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	-14.6 -12.2 -13.9 -9.7 -14.2 -12.0 -10.3 -8.6 -14.8 -12.6 -14.8 -12.6 -11.5	37.0 36.5 36.9 35.9 33.7 36.8 36.8 36.8 35.7 33.7 33.4 31.1 37.4	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-50.5 47.7 49.8 44.6 46.8 46.8 47.8 46.1 43.4 47.5 44.9 41.6 -51.6	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-25.5 -22.7 -24.8 -19.6 -21.8 -21.8 -21.1 -18.4 -22.5 -19.9 -16.6 -26.6	
3.69 4.60 6.47 5.00 7.49 9.99 Chann 5.19 5.17 7.75 10.37 13.00 15.57 A Chan 3.72 6.31	-64.0 -63.8 -64.5 -64.1 -63.3 -70.3 -70.3 -62.3 -60.8 -62.5 -71.1 -70.5 -71.8 -71.8 -71.8 -63.2 -63.9	H V V V V V V V H H H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	-14.6 -12.2 -13.9 -9.7 -14.2 -12.0 -10.3 -8.6 -14.8 -12.6 -11.5 -15.2 -11.7	37.0 36.5 36.9 35.9 33.7 36.8 36.8 35.7 33.7 33.4 31.1 37.4 36.6	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-50.5 47.7 49.8 44.6 46.8 46.8 47.8 46.1 43.4 47.5 44.9 41.6 51.6 47.3	-25.0 -2	-25.5 -22.7 -24.8 -19.6 -21.8 -21.8 -21.8 -22.8 -21.1 -18.4 -22.5 -19.9 -16.6 -26.6 -22.3	
3.69 4.60 6.47 5.00 7.49 9.99 Chann 5.19 5.17 7.75 10.37 13.00 15.57	-64.0 -63.8 -64.5 -64.1 -63.3 -70.3 -70.3 -62.3 -60.8 -62.5 -71.1 -70.5 -71.8 mel (2680MHz) -63.2	H V V V V V V V V V V H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	-14.6 -12.2 -13.9 -9.7 -14.2 -12.0 -10.3 -8.6 -14.8 -12.6 -14.8 -12.6 -11.5	37.0 36.5 36.9 35.9 33.7 36.8 36.8 36.8 35.7 33.7 33.4 31.1 37.4	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-50.5 47.7 49.8 44.6 46.8 46.8 47.8 46.1 43.4 47.5 44.9 41.6 -51.6	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-25.5 -22.7 -24.8 -19.6 -21.8 -21.8 -21.1 -18.4 -22.5 -19.9 -16.6 -26.6	

Page 906 of 929

9.5. FIELD STRENGTH OF SPURIOUS RADIATION, UAT

9.5.1. LTE BAND 2

QPSK EIRP POWER FOR LTE BAND 2 (20.0MHz BANDWIDTH)

				titution Meas						
Company:										
Project #:		15U21635								
Date:		Sept. 4, 2015								
Fest Engir		W. Chie								
Configurat		EUT Only								
Mode:		LTE Band 2, 20	MHz QPSK							
Test Equip										
Substitutio	on: Horn T59 Sul	ostitution, an	d 8ft SMA Ca	ble						
					1		1			
	Chamb	er	Pr	e-amplifer		Filter			Limit	
r		-					4		Limit	
ſ	Chamb 3m Chamber H	-		e-amplifer Chamber H 💂	Filte		•	EIRP	Limit	-
ſ					Filte		-	EIRP	Limit	•
ſ					Filte		•	EIRP	Limit	•
				Chamber H	Filte		• •	EIRP	Limit	-
Frequenc	3m Chamber H	_	3m (Chamber H		r				Notes
	3m Chamber H	▼ Ant. Pol.		EIRP @ TX Ant End	Preamp		EIRP	EIRP	Limit	• Notes
(GHz)	3m Chamber H	_	3m (Chamber H		r				Notes
Low Channe	3m Chamber H y SA reading (dBm) el (1860MHz)	▼ Ant. Pol. (H/V)	3m C Distance	EIRP @ TX Ant End (dBm)	Preamp	Attenuator	EIRP	Limit	Delta	Notes
(GHz) Low Channe 5.59	3m Chamber H y SA reading (dBm) 1 (1860MHz) -65.2	Ant. Pol. (H/V)	3m C Distance	EIRP @ TX Ant End (dBm)	Preamp 36.7	Attenuator	EIRP -49.9	Limit	Delta	Notes
(GHz) Low Channe	3m Chamber H y SA reading (dBm) el (1860MHz)	▼ Ant. Pol. (H/V)	3m C Distance	EIRP @ TX Ant End (dBm)	Preamp	Attenuator	EIRP	Limit	Delta	Notes
(GHz) Low Channo 5.59 3.72	3m Chamber H y SA reading (dBm) 1 (1860MHz) -65.2	Ant. Pol. (H/V)	3m C Distance	EIRP @ TX Ant End (dBm)	Preamp 36.7	Attenuator	EIRP -49.9	Limit	Delta	Notes
(GHz) Low Channe 5.59 3.72 Mid Channe 5.68	3m Chamber H y SA reading (dBm) el (1860MHz) -65.2 -64.8 I (1880MHz) -65.3	Ant. Pol. (H/V) H V	3m 0 Distance	EIRP @ TX Ant End (dBm) -14.2 -17.1	Preamp 36.7 37.4 36.7	Attenuator	EIRP -49.9 -53.5 -49.9	-13.0 -13.0 -13.0	Delta 36.9 40.5 	Notes
(GHz) Low Channe 5.59 3.72 Mid Channe	3m Chamber H y SA reading (dBm) al (1860MHz) -65.2 -64.8 I (1880MHz)	Ant. Pol. (H/V) H V	3m (Distance	EIRP @ TX Ant End (dBm) -14.2 -17.1	Preamp 36.7 37.4	Attenuator	EIRP -49.9 -53.5	Limit -13.0 -13.0	Delta -36.9 -40.5	Notes
(GHz) Low Channe 5.59 3.72 Mid Channe 5.68 3.77	3m Chamber H y SA reading (dBm) al (1860MHz) -65.2 -64.8 I (1880MHz) -65.3 -65.3	Ant. Pol. (H/V) H V	3m 0 Distance	EIRP @ TX Ant End (dBm) -14.2 -17.1	Preamp 36.7 37.4 36.7	Attenuator	EIRP -49.9 -53.5 -49.9	-13.0 -13.0 -13.0	Delta 36.9 40.5 	Notes
(GHz) .ow Channe 5.59 3.72 Mid Channe 5.68 3.77 High Chann	3m Chamber H y SA reading (dBm) -1 (1860MHz) -65.2 -64.8 i (1880MHz) -65.3 -65.3 -65.3 el (1900MHz)	Ant. Pol. (H/V) H V H V	3m C Distance 3.0 3.0 3.0 3.0	Chamber H EIRP @ TX Ant End (dBm) -14.2 -17.1 -14.2 -17.5	Preamp 36.7 37.4 36.7 37.3	Attenuator	EIRP -49.9 -53.5 -49.9 -53.8	Limit -13.0 -13.0 -13.0 -13.0	Delta -36.9 -40.5 -36.9 -40.8	Notes
(GHz) Low Channe 5.59 3.72 Mid Channe 5.68 3.77	3m Chamber H y SA reading (dBm) al (1860MHz) -65.2 -64.8 I (1880MHz) -65.3 -65.3	Ant. Pol. (H/V) H V	3m 0 Distance	EIRP @ TX Ant End (dBm) -14.2 -17.1	Preamp 36.7 37.4 36.7	Attenuator	EIRP -49.9 -53.5 -49.9	-13.0 -13.0 -13.0	Delta 36.9 40.5 	Notes

Page 907 of 929

16QAM EIRP POWER FOR LTE BAND 2 (20.0MHz BANDWIDTH)

			-	titution Mease ated Chambe						
•										
Company: Project #:		451104005								
Date:		15U21635 Sept. 4, 2015								
Date. Test Engine		W. Chie								
Configuratio		EUT Only								
Mode:		LTE Band 2, 2	MHz 160AM							
		212 Dunu 2, 2	5							
Test Equipm	ent:									
	: Horn T59 Sub	stitution, an	d 8ft SMA Ca	ble						
		· · · · · · · · · · · · · · · · · · ·								
	Chambe	r	Pre	-amplifer		Filter			Limit	
	Ghambe						T		Linit	
3n	n Chamber H	•	3m Cl	namber H 🚽	Filter			EIRP		
				-	1	× .				•
			I		• ••••					
L	1		I			1			1	 !
				EIRP @ TX						
Frequency	SA reading	Ant. Pol.	Distance	EIRP @ TX Ant End	Preamp	Attenuator	EIRP	Limit	Delta	Notes
Frequency (GHz)	SA reading (dBm)	Ant. Pol. (H/V)	Distance				EIRP		Delta	Notes
• •	(dBm)		Distance	Ant End			EIRP		Delta	Notes
(GHz) Low Channel 5.59	(dBm) (1860MHz) -64.6	(H/V) н	3.0	Ant End (dBm) -13.6	Preamp 36.7	Attenuator	-49.3	Limit -13.0	-36.3	Notes
(GHz) Low Channel	(dBm) (1860MHz)	(H/V)		Ant End (dBm)	Preamp	Attenuator		Limit		Notes
(GHz) Low Channel 5.59 3.69	(dBm) (1860MHz) -64.6 -64.6	(H/V) н	3.0	Ant End (dBm) -13.6	Preamp 36.7	Attenuator	-49.3	Limit -13.0	-36.3	Notes
(GHz) Low Channel 5.59 3.69 Mid Channel ((dBm) (1860MHz) -64.6 -64.6 1880MHz)	(H/V) н v	3.0 3.0	Ant End (dBm) -13.6 -16.9	Preamp 36.7 37.4	Attenuator	-49.3 -53.3	Limit -13.0 -13.0	-36.3 -40.3	Notes
(GHz) Low Channel 5.59 3.69	(dBm) (1860MHz) -64.6 -64.6	(H/V) н	3.0	Ant End (dBm) -13.6	Preamp 36.7	Attenuator	-49.3	Limit -13.0	-36.3	Notes
(GHz) Low Channel 5.59 3.69 Mid Channel (3.79 5.61	(dBm) (1860MHz) -64.6 -64.6 1880MHz) -64.9 -64.6	(H/V) н v	3.0 3.0 3.0	Ant End (dBm) -13.6 -16.9 -17.0	Preamp 36.7 37.4 37.3	Attenuator 1.0 1.0 1.0	-49.3 -53.3 -53.3	Limit -13.0 -13.0 -13.0	-36.3 -40.3 -40.3	Notes
(GHz) Low Channel 5.59 3.69 Mid Channel 3.79 5.61 High Channel	(dBm) (1860MHz) -64.6 -64.6 1880MHz) -64.9 -64.6 (1900MHz)	(H/V) H V H V	3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -13.6 -16.9 -17.0 -17.0 -13.5	Preamp 36.7 37.4 37.3 36.7	Attenuator 1.0 1.0 1.0 1.0 1.0	-49.3 -53.3 -53.3 -49.2	Limit -13.0 -13.0 -13.0	-36.3 -40.3 -40.3 -36.2	Notes
(GHz) Low Channel 5.59 3.69 Mid Channel 3.79	(dBm) (1860MHz) -64.6 -64.6 1880MHz) -64.9 -64.6	(H/V) н v	3.0 3.0 3.0	Ant End (dBm) -13.6 -16.9 -17.0	Preamp 36.7 37.4 37.3	Attenuator 1.0 1.0 1.0	-49.3 -53.3 -53.3	Limit -13.0 -13.0 -13.0	-36.3 -40.3 -40.3	Notes

Page 908 of 929

9.5.2. LTE BAND 4

QPSK EIRP POWER FOR LTE BAND 4 (20.0MHz BANDWIDTH)

				titution Measu ated Chamber	rement						
Company:											
Project #:		15U21635									
Date:		Sept. 4, 2015									
Test Engin	eer:	W. Chie									
Configurati	ion:	EUT Only									
Mode:		LTE Band 4, 20	MHz QPSK								
					1						
ſ	Chaml 3m Chamber H			re-amplifer Chamber G	Filte	Filter r	•	EIRP	Limit	·	
	3m Chamber H	Ant. Pol.		Chamber G EIRP @ TX Ant End	Filte		EIRP	EIRP		• Notes	
(GHz)	3m Chamber H y SA reading (dBm)	· ·	3m (Chamber G		r	EIRP			Votes	
(GHz)	3m Chamber H y SA reading (dBm)	Ant. Pol.	3m (Chamber G EIRP @ TX Ant End		r	EIRP			Notes	
(GHz) Low Channe 3.47 5.13	3m Chamber H y SA reading (dBm) 1 (1720MHz) -66.7 -67.2	Ant. Pol. (H/V)	Jistance	EIRP @ TX Ant End (dBm) -18.8 -17.0	Preamp 36.4 36.3	r Attenuator	-54.2 -52.3	Limit -13.0 -13.0	Delta -41.2 -39.3	Notes	
Low Channe 3.47 5.13 3.47	3m Chamber H y SA reading (dBm) 1 (1720MHz) -66.7 -67.2 -67.1	Ant. Pol. (H/V) H H V	3m Distance	Chamber G EIRP @ TX Ant End (dBm) -18.8 -17.0 -19.9	Preamp 36.4 36.3 36.4	r Attenuator 1.0 1.0 1.0	-54.2 -52.3 -55.3	Limit -13.0 -13.0 -13.0	Delta -41.2 -39.3 -42.3	Notes	
(GHz) Low Channe 3.47 5.13	3m Chamber H y SA reading (dBm) 1 (1720MHz) -66.7 -67.2	Ant. Pol. (H/V)	Jistance	EIRP @ TX Ant End (dBm) -18.8 -17.0	Preamp 36.4 36.3	r Attenuator	-54.2 -52.3	Limit -13.0 -13.0	Delta -41.2 -39.3	Notes	
(GHz) Low Channe 3.47 5.13 3.47 5.13	3m Chamber H y SA reading (dBm) 1 (1720MHz) -66.7 -67.2 -67.1	Ant. Pol. (H/V) H H V	3m Distance	Chamber G EIRP @ TX Ant End (dBm) -18.8 -17.0 -19.9	Preamp 36.4 36.3 36.4	r Attenuator 1.0 1.0 1.0	-54.2 -52.3 -55.3	Limit -13.0 -13.0 -13.0	Delta -41.2 -39.3 -42.3	Notes	
(GHz) Low Channe 3.47 5.13 3.47 5.13 Mid Channel 3.43	3m Chamber H y SA reading (dBm) 1 (1720MHz) -66.7 -67.2 -67.1 -69.0 1 (1732.5MHz) -66.1	Ant. Pol. (H/V) H H V V	3.0 3.0 3.0 3.0 3.0 3.0	Chamber G EIRP @ TX Ant End (dBm) -18.8 -17.0 -19.9 -18.6 -18.3	Preamp 36.4 36.3 36.4 36.3 36.4	r Attenuator 1.0 1.0 1.0 1.0 1.0	-54.2 -52.3 -55.3 -53.8 -53.7	Limit -13.0 -13.0 -13.0 -13.0 -13.0	Delta -41.2 -39.3 -42.3 -40.8 -40.7	Notes	
(GHz) Low Channe 3.47 5.13 3.47 5.13 Mid Channel 3.43 5.17	3m Chamber H y SA reading (dBm) 1 (1720MHz) -66.7 -67.2 -67.1 -69.0 1 (1732.5MHz) -66.1 -66.9	Ant. Pol. (H/V) H H V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Chamber G EIRP @ TX Ant End (dBm) -18.8 -17.0 -19.9 -18.6 -18.3 -16.6	Preamp 36.4 36.3 36.4 36.3 36.4 36.3	r Attenuator 1.0 1.0 1.0 1.0 1.0 1.0	-54.2 -52.3 -55.3 -53.8 -53.7 -51.9	Limit -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Delta -41.2 -39.3 -40.8 -40.7 -38.9	Notes	
(GHz) Low Channe 3.47 5.13 3.47 5.13 Mid Channel 3.43 5.17 3.43	3m Chamber H y SA reading (dBm) 1 (1720MHz) -66.7 -67.2 -67.1 -69.0 1 (1732.5MHz) -66.1 -66.9 -65.3	Ant. Pol. (H/V) H H V V V H H H V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -18.8 -17.0 -19.9 -18.6 -18.3 -16.6 -18.2	Preamp 36.4 36.3 36.4 36.3 36.4 36.3 36.4	r Attenuator 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-54.2 -52.3 -55.3 -53.8 -53.7 -51.9 -53.6	Limit -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Delta -41.2 -39.3 -42.3 -40.8 -40.7 -38.9 -40.6	Notes	
(GHz) Low Channe 3.47 5.13 3.47 5.13 Mid Channel 3.43 5.17	3m Chamber H y SA reading (dBm) 1 (1720MHz) -66.7 -67.2 -67.1 -69.0 1 (1732.5MHz) -66.1 -66.9	Ant. Pol. (H/V) H H V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Chamber G EIRP @ TX Ant End (dBm) -18.8 -17.0 -19.9 -18.6 -18.3 -16.6	Preamp 36.4 36.3 36.4 36.3 36.4 36.3	r Attenuator 1.0 1.0 1.0 1.0 1.0 1.0	-54.2 -52.3 -55.3 -53.8 -53.7 -51.9	Limit -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Delta -41.2 -39.3 -40.8 -40.7 -38.9	Notes	
(GHz) Low Channe 3.47 5.13 3.47 5.13 Mid Channel 3.43 5.17 3.43 5.17 3.43 5.17	3m Chamber H y SA reading (dBm) 1 (1720MHz) -66.7 -67.2 -67.1 -69.0 1 (1732.5MHz) -66.1 -66.9 -65.3 -66.6 -66.6 -66.9 -65.3 -66.6	Ant. Pol. (H/V) H H V V V V V V V V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Chamber G EIRP @ TX Ant End (dBm) -18.8 -17.0 -19.9 -18.6 -18.3 -16.6 -18.2 -16.1	Preamp 36.4 36.3 36.4 36.3 36.4 36.3 36.4 36.3 36.4 36.3	r Attenuator 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-54.2 -52.3 -55.3 -53.8 -53.7 -51.9 -53.6 -51.4	Limit -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Delta -41.2 -39.3 -42.3 -40.8 -40.7 -38.9 -40.6 -38.4	Notes	
(GHz) Low Channe 3.47 5.13 3.47 5.13 Mid Channel 3.43 5.17 3.43 5.17 3.43 5.17 4.19 Channel 3.52	3m Chamber H y SA reading (dBm) 1 (1720MHz) -66.7 -67.2 -67.1 -69.0 1 (1732.5MHz) -66.1 -66.9 -65.3 -66.6 -66.6 -66.6 -66.6 -67.2 -67.2 -67.2 -66.1 -66.7 -65.3 -66.6 -66.6 -66.6 -67.2 -66.7 -67.2 -67.2 -67.2 -67.2 -67.2 -67.2 -66.1 -65.3 -66.6 -66.6 -67.2 -66.1 -66.5 -66.6 -65.3 -66.6 -67.2 -67.2 -67.2 -67.2 -67.2 -67.2 -67.2 -67.2 -67.2 -67.2 -67.2 -67.3 -66.6 -67.3 -67.2 -67.3 -67.2 -67.3 -67.2 -67.3 -67.3 -67.2 -67.2 -67.2 -67.3 -67.2 -77.2 -77	Ant. Pol. (H/V) H H V V V H H H H H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Chamber G EIRP @ TX Ant End (dBm) -18.8 -17.0 -19.9 -18.6 -18.3 -16.6 -18.2 -16.1 -19.3	Preamp 36.4 36.3 36.4 36.3 36.4 36.3 36.4 36.3 36.4 36.3 36.4	r Attenuator 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-54.2 -52.3 -55.3 -53.8 -53.7 -51.9 -53.6 -51.4 -51.4 -54.7	Limit -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Delta -41.2 -39.3 -42.3 -40.7 -38.9 -40.6 -38.4 -41.7	Notes	
(GHz) Low Channe 3.47 5.13 3.47 5.13 Mid Channel 3.43 5.17 3.43 5.17 High Channe	3m Chamber H y SA reading (dBm) 1 (1720MHz) -66.7 -67.2 -67.1 -69.0 1 (1732.5MHz) -66.1 -66.9 -65.3 -66.6 -66.6 -66.9 -65.3 -66.6	Ant. Pol. (H/V) H H V V V V V V V V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Chamber G EIRP @ TX Ant End (dBm) -18.8 -17.0 -19.9 -18.6 -18.3 -16.6 -18.2 -16.1	Preamp 36.4 36.3 36.4 36.3 36.4 36.3 36.4 36.3 36.4 36.3	r Attenuator 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-54.2 -52.3 -55.3 -53.8 -53.7 -51.9 -53.6 -51.4	Limit -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Delta -41.2 -39.3 -42.3 -40.8 -40.7 -38.9 -40.6 -38.4	Notes	

Page 909 of 929

16QAM EIRP POWER FOR LTE BAND 4 (20.0MHz BANDWIDTH)

				titution Measu ated Chambe						
Company:										
Project #:		15U21635								
Date:		Sept. 4, 2015								
Test Engi	neer:	W. Chie								
Configura		EUT Only								
Mode:		LTE Band 4, 20	MHz 16QAM							
			Pr						Limit	
Γ	Chamb 3m Chamber H	er •		e-amplifer hamber H	Filter	Filter	·	EIRP	Linin	•
[3m Chamber H	•	3m C	Chamber H ▼		· · · · · · · · · · · · · · · · · · ·		EIRP		
Frequence	3m Chamber H	Ant. Pol.		EIRP @ TX Ant End	Filter		EIRP		Delta	v Notes
(GHz)	3m Chamber H cy SA reading (dBm)	•	3m C	Chamber H ▼		· · · · · · · · · · · · · · · · · · ·		EIRP		
(GHz)	3m Chamber H	Ant. Pol.	3m C	EIRP @ TX Ant End		· · · · · · · · · · · · · · · · · · ·		EIRP		
(GHz) Low Chann	3m Chamber H cy SA reading (dBm) lel (1720MHz)	Ant. Pol. (H/V)	3m C Distance	Hamber H FIRP @ TX Ant End (dBm)	Preamp	Attenuator	EIRP	EIRP	Delta	
(GHz) Low Chann 5.13 3.43	3m Chamber H Cy SA reading (dBm) iel (1720MHz) -67.4 -66.2	▼ Ant. Pol. (H/V)	3m C Distance	EIRP @ TX Ant End (dBm) -17.2	Preamp 36.8	Attenuator	EIRP -53.0	Limit	Delta -40.0	
(GHz) Low Chann 5.13 3.43 Mid Channe	3m Chamber H Cy SA reading (dBm) iel (1720Htz) -67.4 -66.2 el (1732.5MHz)	Ant. Pol. (H/V) H V	3m C Distance	EIRP @ TX Ant End (dBm) -17.2 -19.1	Preamp 36.8 37.7	Attenuator	EIRP -53.0 -55.9	EIRP Limit -13.0 -13.0	Delta -40.0 -42.9	
(GHz) Low Chann 5.13 3.43	3m Chamber H Cy SA reading (dBm) iel (1720MHz) -67.4 -66.2	▼ Ant. Pol. (H/V)	3m C Distance	EIRP @ TX Ant End (dBm) -17.2	Preamp 36.8	Attenuator	EIRP -53.0	Limit	Delta	
(GHz) Low Chann 5.13 3.43 Mid Channe 5.17 3.43	3m Chamber H Cy SA reading (dBm) iel (1720MHz) -67.4 -66.2 iel (1732.5MHz) -66.9 -66.3	Ant. Pol. (H/V) H V	3m C Distance	EIRP @ TX Ant End (dBm) -17.2 -19.1 -16.6	Preamp 36.8 37.7 36.8	Attenuator	EIRP -53.0 -55.9 -52.5	EIRP	Delta -40.0 -42.9 -39.5	
(GHz) Low Chann 5.13 3.43 Mid Channe 5.17 3.43 High Chanr	3m Chamber H Cy SA reading (dBm) el (1720Htz) -66.2 el (1732.5Mtz) -66.3 el (1745Mtz)	Ant. Pol. (H/V) H V	3m C Distance 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -17.2 -19.1 -16.6 -19.2	Preamp 36.8 37.7 36.8 37.7	Attenuator 1.0 1.0 1.0 1.0	EIRP -53.0 -55.9 -52.5 -55.9	EIRP Limit -13.0 -13.0 -13.0	Delta -40.0 -42.9 -39.5 -42.9	
(GHz) Low Chann 5.13 3.43 Mid Channe 5.17 3.43 High Chann 3.50	3m Chamber H SA reading (dBm) lel (1720MHz) -66.2 el (1732.5MHz) -66.3 lel (1745MHz) -66.8	Ant. Pol. (H/V) H V	3m C Distance 3.0 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -17.2 -19.1 -16.6 -19.2 -18.9	Preamp 36.8 37.7 36.8 37.7 37.6	Attenuator 1.0 1.0 1.0 1.0 1.0 1.0	EIRP -53.0 -55.9 -52.5 -55.9 -55.6	EIRP Limit -13.0 -13.0 -13.0 -13.0 -13.0	Delta -40.0 -42.9 -39.5 -42.9 -42.6	
(GHz) Low Chann 5.13 3.43 Mid Channe 5.17 3.43 High Chanr	3m Chamber H Cy SA reading (dBm) el (1720Htz) -66.2 el (1732.5Mtz) -66.3 el (1745Mtz)	Ant. Pol. (H/V) H V	3m C Distance 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -17.2 -19.1 -16.6 -19.2	Preamp 36.8 37.7 36.8 37.7	Attenuator 1.0 1.0 1.0 1.0	EIRP -53.0 -55.9 -52.5 -55.9	EIRP Limit -13.0 -13.0 -13.0	Delta -40.0 -42.9 -39.5 -42.9	
(GHz) Low Chann 5.13 3.43 Mid Chann 5.17 3.43 High Chann 3.50 5.27	3m Chamber H Cy SA reading (dBm) rel (1720MHz) -67.4 -66.2 rel (1732.5MHz) -66.3 rel (1745MHz) -66.8 -67.2	Апt. Pol. (H/V) Н V H V H H V V V V V V	3m C Distance 3.0 3.0 3.0 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -17.2 -19.1 -16.6 -19.2 	Preamp 36.8 37.7 36.8 37.7 37.6 36.8	Attenuator 1.0 1.0 1.0 1.0 1.0 1.0	EIRP -53.0 -55.9 -55.9 -55.9 -55.6 -55.6 -52.5	EIRP Limit -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Delta -40.0 -42.9 -39.5 -42.9 -42.6 -39.5	
(GHz) Low Chann 5.13 3.43 Mid Chann 5.17 3.43 High Chann 3.50 5.27 3.51	3m Chamber H Cy SA reading (dBm) -67.4 -66.2 el (1720MHz) -66.9 -66.9 -66.3 10 -66.8 -67.2 -68.2	Ant. Pol. (H/V) H V H V H V	3m C Distance 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -17.2 -19.1 -16.6 -19.2 -18.9 -16.7 -20.9	Preamp 36.8 37.7 36.8 37.7 37.6 36.8 37.6 36.8 37.6	Attenuator 1.0 1.0 1.0 1.0 1.0 1.0 1.0	EIRP -53.0 -55.9 -52.5 -55.9 -55.6 -52.5 -52.5 -57.6	EIRP Limit -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Delta -40.0 -42.9 -39.5 -42.9 -42.6 -39.5 -44.6	

Page 910 of 929

9.5.3. LTE BAND 5

QPSK EIRP POWER FOR LTE BAND 5 (10.0MHZ BANDWIDTH)

		-		titution Meas ated Chambe						
Company: Project #: Date: Fest Engin Configurati Mode:	eer: on:	15U21635 09/04/15 W Chie EUT only LTE Band 5, 1	20MHz QPSK							
<u>Fest Equip</u> Substitutio	<u>ment:</u> n: Horn T59 Sub	ostitution, a	nd 8ft SMA Ca	ıble			1			1
	Chambe	r	Pre	e-amplifer		Filter			Limit	
3	m Chamber H	•	3m C	hamber H 🖵	Filter	r <u>-</u>]	EIRP	•	
Frequenc (GHz)	y SA reading (dBm)	Ant. Pol. (H/V)	Distance	EIRP @ TX Ant End (dBm)	Preamp	Attenuator	EIRP	Limit	Delta	Notes
ow Channe	I (834MHz)									
1.63	-80.8	H	3.0	-40.6	37.7	1.0	-77.3	-13.0	-64.3	
4.15 5.01	-78.8 -77.9	H H	3.0 3.0	-30.5 -27.9	37.1 36.9	1.0 1.0	-66.5 -63.8	-13.0 -13.0	-53.5 -50.8	
5.83	-78.6	Н	3.0	-27.2	36.7	1.0	-62.9	-13.0	-49.9	
7.49	-78.5	H	3.0	-24.7	35.9	1.0	-59.6	-13.0	-46.6	
8.26 2.51	-78.1 -79.1	H V	3.0 3.0	-23.5 -34.9	35.3 37.1	1.0 1.0	-57.7 -71.0	-13.0 -13.0	-44.7 -58.0	
3.30	-77.9	V	3.0	-34.5	37.9	1.0	-68.0	-13.0	-55.0	
6.64	-78.6	V	3.0	-26.0	36.5	1.0	-61.5	-13.0	-48.5	
Mid Channe	(836.5MHz)	L								
2.50	-78.3	H	3.0	-34.2	37.1	1.0	-70.3	-13.0	-57.3	
3.31 4.20	-78.8 -75.3	H	3.0 3.0	-31.0 -26.9	37.8 37.0	1.0 1.0	-67.9 -62.9	-13.0 -13.0	-54.9 -49.9	
4.20	-75.3	H H	3.0	-26.9 -26.4	37.0	1.0	-62.9 -62.0	-13.0 -13.0	-49.9 -49.0	
7.56	-77.5	Н	3.0	-23.6	35.9	1.0	-58.5	-13.0	-45.5	
8.36	-78.1	H	3.0	-23.3	35.2	1.0	-57.5	-13.0	-44.5	
1.66 5.05	-80.9 -75.8	V V	3.0 3.0	-40.2 -25.5	37.7 36.9	1.0 1.0	-76.9 -61.4	-13.0 -13.0	-63.9 -48.4	
6.73	-78.6	v	3.0	-25.9	36.5	1.0	-61.3	-13.0	-40.4 -48.3	
ligh Channe	(830MH-)								ļ	
11gn Channe 1.70	-81.6	Н	3.0	-40.8	37.8	1.0	-77.6	-13.0	-64.6	
4.25	-79.2	Н	3.0	-30.7	37.0	1.0	-66.7	-13.0	-53.7	
6.78	-78.2	H	3.0	-25.3	36.4	1.0	-60.7	-13.0	-47.7	
7.58	-77.4 -78.8	H V	3.0 3.0	-23.5 -34.6	35.9 37.1	1.0 1.0	-58.4 -70.7	-13.0 -13.0	-45.4 -57.7	
2.51	-78.7	V	3.0	-34.0 -31.7	37.8	1.0	-68.5	-13.0	-57.7	
2.51 3.40	-77.3	v	3.0	-27.1	36.9	1.0	-62.9	-13.0	-49.9	
3.40 5.03					20.7	10	-61.4	-13.0	-48.4	
3.40	-77.3 -77.1	V V	3.0 3.0	-25.7 -22.5	36.7 35.1	1.0 1.0	-56.6	-13.0	-40.4	

Page 911 of 929

16QAM EIRP POWER FOR LTE BAND 5 (10.0MHZ BANDWIDTH)

Chamber Pre-amplifer Filter Limit 3m Chamber H 3m Chamber H Filter EIRP Limit Frequency SA reading (dBm) Ant Pol. (H/V) Distance EIRP @ TX Ant End (dBm) Preamp Attenuator EIRP Limit Delta Notes 3.33 78.5 H 3.0 30.7 37.8 1.0 67.5 1.3.0 54.5 4.18 77.7 H 3.0 26.2 36.7 1.0 67.5 1.3.0 48.9 5.79 77.5 H 3.0 22.7 35.3 1.0 56.9 1.3.0 48.9 6.66 78.3 V 3.0 22.6 35.5 1.0 61.9 1.3.0 48.9 6.66 78.3 V 3.0 22.8 36.0 1.0 61.1 1.3.0 48.9 6.66 78.3 V 3.0 22.8 36.0 1.0 64.1 1.3.0 48.9 6.66					titution Meas ated Chambe						
Date 09/04/15 Fest Engineer: W Chie Sonfguration: EUT only Mode: LTE Band 5, 20MHz 160AM Fest Equipment: Substitution, and 8ft SMA Cable Chamber Pre-amplifer Filter Limit 3m Chamber H m Chamber H Time Chamber H EIRP Q TX Son Chamber H m Chamber H Time Chamber H EIRP Q TX Frequency SA reading Ant. Pol. Distance Ant. End Pre-amplifer EIRP Q TX Notes 0x0 Channel (3MHz) 0 30.7 37.8 1.0 67.5 1.3.0 54.5 5.79 77.5 H 3.0 26.2 36.7 1.0 61.9 1.3.0 48.9 5.26 77.3 H 3.0 26.6 36.9 1.0 64.7 1.3.0 48.9 5.44 77.7 H 3.0 22.6 1.0 61.9 1.3.0 48.9 5.26 77.3 H											
Test Engineer: W Chie Sortiguration: EUT only Ide: Ite Band 5, 20MH2 16QAM Test Equipment: Substitution: Horn T59 Substitution, and 8ft SMA Cable Image: State Chamber H Pre-amplifer Filter Limit Terequency SA reading Ant. Pol. Distance Filter Limit Delta Notes G(GH2) G(BBm) Ant. Pol. Distance EIRP @TX Pre-amplifer Image: State											
Chriguration: EUT only LTE Band 5, 20MHz 16QAM Ister Eggipment: Substitution: Horn T99 Substitution, and 8t SMA Cable Chamber Pre-amplifer 3m Chamber H Filter Limit EIRP Social Control Social Control Limit EIRP Social Control Organization Social Control Social Control Social Control Frequency SA reading Ant. Pol. (HV) Distance EIRP @ TX Ant. End (dBm) Preamp Attenuator EIRP Limit Notes 333 78.5 H 3.0 30.7 37.8 1.0 67.5 13.0 54.5 3.13 78.5 H 3.0 26.2 36.7 1.0 47.5 13.0 54.5 5.76 77.5 H 3.0 26.2 36.7 1.0 47.9 44.9 44.9 2.46 79.2 V 3.0 27.5 3.0 44.9 44.9 44.9 44.9 44.9 44.9 44.9 44.9 44.9 44.9 44.9 44.9 <td></td>											
Mode: LTE Band 5, 20MHz 16QAM Test Equipment: Substitution: Horn T99 Substitution, and 8t SMA Cable Chamber Pre-amplifer 3m Chamber H Filter Limit Sm Chamber H . Pre-amplifer Filter Limit Frequency SA reading (clBm) Ant Pol. Distance EIRP @ TX Ant End Pre-amplifer Image: Classical Stress of Stress											
Substitution; and 8ft SMA Cable Chamber Pre-amplifer Filter Limit Substitution; and 8ft SMA Cable Pre-amplifer Filter Limit Substitution; and 8ft SMA Cable Frequency SA reading Ant. Pol. Distance Filter Limit Limit SA reading Ant. Pol. Distance Filter Limit Delta Notes SA reading Ant. Pol. Distance Filter Limit Delta Notes 30 37.0 1.0 67.5 13.0 5.4 Notes Sature Limit Delta Notes Limit Limit Sature Sature Sature Sature Sature				MHz 16QAM							
Substitution, and 8ft SMA Cable Chamber Pre-amplifer Filter Limit Image: SA reading (Ant. Pol. (H/V) Distance Filter Limit Limit SA reading (Ant. Pol. (H/V) Distance Pre-amplifer Filter Limit Delta Notes SA reading (Ant. Pol. (H/V) Distance Filter Limit Delta Notes SA reading (Ant. Pol. (H/V) Distance Frequency (dBm) Attenuator EIRP Limit Delta Notes SA reading Ant. Pol. (H/V) Distance Frequency (dBm) Limit Delta Notes SA reading Ant. Pol. Distance (H/W) (Tolspan="2">Refere Q: TX Frequency (dBm) Limit Delta Notes Satistication Satis Trip Limit											
Interview			ostitution, an	d 8ft SMA Ca	ble						
Interview											
Frequency (GHz) SA reading (dBm) Ant Pol. (H/V) Distance (BIRP (dBm) EIRP @ TX Ant End (dBm) Preamp Attenuator Attenuator EIRP Limit Delta Notes 3.33 78.5 H 3.0 30.7 37.8 1.0 67.5 13.0 54.5 4.18 77.5 H 3.0 26.2 36.7 1.0 65.3 13.0 48.9 8.26 77.3 H 3.0 22.7 35.3 1.0 67.9 13.0 48.9 5.01 75.2 V 3.0 35.1 37.1 1.0 77.7 1.3.0 44.7 2.48 79.2 V 3.0 25.6 36.5 1.0 61.1 13.0 48.9 5.66 78.3 V 3.0 22.6 35.5 1.0 61.1 13.0 48.9 6.66 78.3 V 3.0 22.8 36.0 1.0 64.1 13.0 45.8 Nd Channel 636.5					-	_					
Frequency (GHz) SA reading (BBm) Ant Pol. (H/V) Distance (dBm) Ant End (dBm) Preamp Attenuator Attenuator EIRP EIRP Limit Limit Delta Notes 1:ow Channel (834MHz) 3.33 78.5 H 3.0 30.7 37.8 1.0 67.5 13.0 54.5 4.18 77.7 H 3.0 26.2 36.7 1.0 65.3 13.0 52.3 5.79 77.5 H 3.0 22.7 35.3 1.0 56.9 13.0 48.9 8.26 77.7.3 H 3.0 22.7 35.3 1.0 76.9 13.0 48.9 1.66 81.7 V 3.0 26.0 36.9 1.0 61.9 13.0 48.9 5.01 76.2 V 3.0 22.6 36.5 1.0 61.1 13.0 48.9 6.66 78.3 V 3.0 22.8 36.0 1.0 58.8 13.0 45.8 <t< td=""><td>3</td><td>3m Chamber H</td><td>-</td><td>3m (</td><td>Chamber H</td><td>Filt</td><td>er</td><td>•</td><td>EIRP</td><td>•</td><td>•</td></t<>	3	3m Chamber H	-	3m (Chamber H	Filt	er	•	EIRP	•	•
Frequency (GHz) SA reading (GBm) Ant Pol. (H/V) Distance (GBm) Ant End (dBm) Preamp (dBm) Attenuator EIRP Limit Limit Delta Notes .ow Channel (834MHz) 3.33 78.5 H 3.0 30.7 37.8 1.0 67.5 13.0 54.5 4.18 77.7 H 3.0 26.2 36.7 1.0 65.3 13.0 52.3 5.79 .77.5 H 3.0 22.7 35.3 1.0 .66.9 43.0 48.9 8.26 .77.3 H 3.0 22.7 35.3 1.0 .71.9 48.9 1.66 81.7 V 3.0 26.0 36.9 1.0 .61.9 .13.0 48.9 5.01 .76.4 V 3.0 22.6 36.5 1.0 .61.1 .13.0 48.9 6.66 .78.3 V 3.0 22.6 36.5 1.0 .61.1 .13.0 45.8 3.31 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
(GHz) (dBm) (H/V) (dBm) Image: constraint of the state of					EIRP @ TX						
Ow Channel (83MHz) Image: Constraint of the second sec		-		Distance	1	Preamp	Attenuator	EIRP	Limit	Delta	Notes
3.33 78.5 H 3.0 30.7 37.8 1.0 67.5 .13.0 .54.5 4.18 77.7 H 3.0 .29.3 37.0 1.0 45.3 .13.0 .52.3 5.79 .77.5 H 3.0 .26.2 36.7 1.0 .61.9 .13.0 .48.9 8.26 .77.3 H 3.0 .22.7 .35.3 1.0 .56.9 .13.0 .43.9 1.66 81.7 V 3.0 .41.0 .37.7 1.0 .77.7 .13.0 .64.7 2.48 .79.2 V 3.0 .26.0 .36.5 1.0 .61.1 .13.0 .48.9 6.66 .78.3 V 3.0 .26.6 .36.5 1.0 .61.1 .13.0 .48.1 7.48 .77.4 V 3.0 .22.6 .36.5 1.0 .67.3 .13.0 .48.1 3.31 .78.3 H 3.0 .28.4 .37.0 1.0 .67.3 .13.0 .54.3 5.00 .77.0 H </td <td><u> </u></td> <td></td> <td>(H/V)</td> <td></td> <td>(dBm)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	<u> </u>		(H/V)		(dBm)						
4.18 -77.7 H 3.0 -29.3 37.0 1.0 -65.3 -13.0 -52.3 5.79 77.5 H 3.0 -26.2 36.7 1.0 -61.9 -13.0 -48.9 8.26 77.3 H 3.0 -22.7 35.3 1.0 -56.9 13.0 -48.9 1.66 81.7 V 3.0 -22.7 35.3 1.0 -77.7 -13.0 -64.7 2.48 79.2 V 3.0 -26.0 36.9 1.0 -71.2 13.0 -64.7 5.01 76.3 V 3.0 -26.6 36.5 1.0 -61.1 -13.0 -48.9 6.66 78.3 V 3.0 -22.6 36.5 1.0 -61.1 -13.0 -48.1 7.48 77.4 V 3.0 -22.8 36.0 1.0 -58.8 -13.0 -45.8 8.31 78.3 H 3.0 -22.8 36.9 1.0 -67.3 -13.0 -54.3 42.1 76.9 H <			ц	2.0	20.7	27.0	10	67 F	12.0	EAE	
5.79 .77.5 H 3.0 26.2 36.7 1.0 61.9 .13.0 48.9 8.26 .77.3 H 3.0 .22.7 35.3 1.0 .56.9 .13.0 .43.9 1.66 .81.7 V 3.0 .41.0 .77.7 1.0 .77.7 1.3.0 .64.7 2.48 .79.2 V 3.0 .26.0 .36.9 1.0 .61.9 .13.0 .48.9 6.66 .78.3 V 3.0 .25.6 .36.5 1.0 .61.1 .13.0 .48.1 7.48 .77.4 V 3.0 .25.6 .36.5 1.0 .61.1 .13.0 .48.1 1.42 .76.9 H 3.0 .22.8 .36.0 1.0 .58.8 .13.0 .45.8 Hid Channel (856.5MHz) </td <td></td>											
1.66 81.7 V 3.0 41.0 37.7 1.0 77.7 13.0 64.7 2.48 79.2 V 3.0 35.1 37.1 1.0 71.2 13.0 58.2 5.01 7.62 V 3.0 26.0 36.9 1.0 61.9 13.0 48.9 6.66 78.3 V 3.0 226.6 36.5 1.0 61.1 -13.0 48.1 7.48 77.4 V 3.0 23.8 36.0 1.0 58.8 -13.0 48.1 7.48 77.4 V 3.0 23.8 36.0 1.0 58.8 -13.0 45.8 No 28.4 37.0 1.0 47.3 -13.0 45.3 4.21 76.9 H 3.0 28.4 37.0 1.0 46.4.5 13.0 51.5 5.00 77.0 H 3.0 25.7 36.5 1.0 40.4.3 49.9											
2.48 .79.2 V 3.0 .35.1 37.1 1.0 .71.2 .13.0 .58.2 5.01 .76.2 V 3.0 .26.0 36.9 1.0 61.9 .13.0 .48.9 6.66 .78.3 V 3.0 .25.6 36.5 1.0 61.1 .13.0 .48.9 7.48 .77.4 V 3.0 .23.8 36.0 1.0 .58.8 .13.0 .45.8 Ald Channel (836.5MHz)											
5.01 .76.2 V 3.0 .26.0 36.9 1.0 .61.9 .13.0 .48.9 6.66 .78.3 V 3.0 .25.6 36.5 1.0 .61.1 .13.0 .48.1 7.48 .77.4 V 3.0 .23.8 36.0 1.0 .61.1 .13.0 .48.1 7.48 .77.4 V 3.0 .23.8 36.0 1.0 .68.8 .13.0 .48.1 7.48 .77.4 V 3.0 .23.8 .36.0 1.0 .67.3 .13.0 .45.3 .3.1 .78.3 H 3.0 .28.4 .70.0 1.0 .64.5 .13.0 .51.5 5.00 .77.0 H 3.0 .25.7 .36.7 1.0 .61.4 .13.0 .48.4 .6.73 .78.0 H 3.0 .25.2 .36.5 1.0 .60.6 .13.0 .47.6 1.65 .80.9 V 3.0 .34.4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
6.66 78.3 V 3.0 25.6 36.5 1.0 61.1 13.0 48.1 7.48 77.4 V 3.0 23.8 36.0 1.0 58.8 13.0 48.1 Add Channel (836.5MHz) 78.3 H 3.0 23.8 36.0 1.0 58.8 13.0 45.8 Add Channel (836.5MHz) 78.3 H 3.0 23.6 37.8 1.0 67.3 13.0 54.3 4.21 76.9 H 3.0 28.4 37.0 1.0 67.3 13.0 54.3 4.21 76.9 H 3.0 225.7 36.5 1.0 64.5 13.0 48.4 6.73 77.2 H 3.0 225.2 36.5 1.0 60.6 13.0 47.6 1.65 -80.9 V 3.0 24.3 35.9 1.0 77.1 13.0 64.1 2.51 77.8 V 3.0 24.3 35.9 1.0 75.5 75.7 7.51 77.7 V 3.0											
7.48 .77.4 V 3.0 .23.8 36.0 1.0 .58.8 .13.0 .45.8 Mid Channel (836.5MHz) .											
Mid Channel (836.5MHz) Mid Solution Sol											
3.31 78.3 H 3.0 30.5 37.8 1.0 67.3 13.0 54.3 4.21 -76.9 H 3.0 -28.4 37.0 1.0 64.5 -13.0 51.5 5.00 -77.0 H 3.0 -27.0 36.9 1.0 64.5 -13.0 49.9 5.86 -77.2 H 3.0 -25.7 36.7 1.0 61.4 -13.0 48.4 6.73 -78.0 H 3.0 -25.2 36.5 1.0 60.6 -13.0 47.6 1.65 -80.9 V 3.0 -24.3 37.7 1.0 -77.1 13.0 48.4 2.51 -78.6 V 3.0 -24.3 35.9 1.0 -59.2 -13.0 46.2 8.36 -77.7 V 3.0 -23.2 35.2 1.0 -57.5 -75.5 7.51 -77.9 V 3.0 -23.2 35.2 1.0 -57.3 -46.2 1igh Channel (839MHz) - - - - <				0.0	-20.0			-0010	-1010		
4.21 .76.9 H 3.0 .28.4 37.0 1.0 .64.5 .13.0 .51.5 5.00 .77.0 H 3.0 .27.0 36.9 1.0 .62.9 .13.0 .49.9 5.86 .77.2 H 3.0 .25.7 36.7 1.0 .61.4 .13.0 .49.9 5.86 .77.8.0 H 3.0 .25.2 36.5 1.0 .61.4 .13.0 .48.4 6.73 .78.0 H 3.0 .25.2 36.5 1.0 .60.6 .13.0 .47.6 1.65 .80.9 V 3.0 .40.3 .37.7 1.0 .77.1 .13.0 .64.1 2.51 .78.6 V 3.0 .24.3 .35.9 1.0 .59.2 .13.0 .46.2 8.36 .77.7 V 3.0 .23.2 .35.2 1.0 .57.3 .13.0 .44.3 1igh Channel (839MHz)											
5.00 -77.0 H 3.0 -27.0 36.9 1.0 -62.9 -13.0 49.9 5.86 -77.2 H 3.0 -25.7 36.7 1.0 -61.4 -13.0 48.4 6.73 -78.0 H 3.0 -25.2 36.5 1.0 -60.6 -13.0 47.6 1.65 -80.9 V 3.0 -40.3 37.7 1.0 -77.1 -13.0 -64.1 2.51 -78.6 V 3.0 -24.3 35.9 1.0 59.2 13.0 46.2 8.36 -77.7 V 3.0 -24.3 35.9 1.0 59.2 1.3.0 46.2 8.36 -77.7 V 3.0 -23.2 35.2 1.0 -57.3 -13.0 44.3 10 -79.2 H 3.0 -35.0 37.1 1.0 -71.1 -13.0 -58.1 3.35 -78.5 H 3.0 -30.7 37.8											
5.86 -77.2 H 3.0 -25.7 36.7 1.0 61.4 -13.0 48.4 6.73 78.0 H 3.0 -25.2 36.5 1.0 -60.6 -13.0 -48.4 1.65 80.9 V 3.0 -25.2 36.5 1.0 -60.6 -13.0 -47.6 2.51 -78.6 V 3.0 -40.3 37.7 1.0 -77.1 13.0 -64.1 2.51 -78.6 V 3.0 -34.4 37.1 1.0 -70.5 -13.0 -54.1 8.36 -77.7 V 3.0 -24.3 35.9 1.0 -59.2 -13.0 -46.2 8.36 -77.7 V 3.0 -23.2 35.2 1.0 -57.3 -13.0 -44.3 1igh Channel (839MHz) - - - - - - - 2.51 -79.2 H 3.0 -35.0 37.1 1.0 -71.1											
6.73 -78.0 H 3.0 -25.2 36.5 1.0 -60.6 -13.0 47.6 1.65 80.9 V 3.0 40.3 37.7 1.0 -77.1 -13.0 -64.1 2.51 -78.6 V 3.0 34.4 37.1 1.0 -77.1 -13.0 -64.1 2.51 -78.6 V 3.0 24.3 35.9 1.0 -59.2 -13.0 46.2 8.36 -77.7 V 3.0 -23.2 35.2 1.0 -57.3 -13.0 44.3 4igh Channel (839MHz) - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
1.65 80.9 V 3.0 40.3 37.7 1.0 -77.1 -13.0 -64.1 2.51 -78.6 V 3.0 -34.4 37.1 1.0 -70.5 -13.0 -57.5 7.51 -77.7 V 3.0 -24.3 35.9 1.0 59.2 13.0 46.2 8.36 -77.7 V 3.0 -23.2 35.2 1.0 -57.3 -13.0 44.3 High Channel (839MHz) -											
2.51 .78.6 V 3.0 34.4 37.1 1.0 .70.5 .13.0 .57.5 7.51 .77.9 V 3.0 .24.3 .35.9 1.0 .59.2 .13.0 .46.2 8.36 .77.7 V 3.0 .23.2 .35.9 1.0 .59.2 .13.0 .46.2 ligh Channel (839MHz) 2.51 3.35 .78.5 H 3.0											
8.36 -77.7 V 3.0 -23.2 35.2 1.0 -57.3 -13.0 -44.3 tigh Channel (839MHz) - <									-13.0	-57.5	
High Channel (839MHz) H 3.0 -35.0 37.1 1.0 -71.1 -13.0 -58.1 2.51 7.9.2 H 3.0 -35.0 37.1 1.0 -71.1 -13.0 -58.1 3.35 7.8.5 H 3.0 -30.7 37.8 1.0 -67.5 -13.0 -54.5 4.21 7.5.9 H 3.0 -27.5 37.0 1.0 -63.5 -13.0 -50.5 5.06 -76.8 H 3.0 -26.7 36.9 1.0 -62.6 -13.0 49.6											
2.51 .79.2 H 3.0 .35.0 37.1 1.0 .71.1 .13.0 .58.1 3.35 .78.5 H 3.0 .30.7 37.8 1.0 .67.5 .13.0 .54.5 4.21 .75.9 H 3.0 .27.5 37.0 1.0 .63.5 .13.0 .50.5 5.06 .76.8 H 3.0 .26.7 36.9 1.0 .62.6 .13.0 .49.6	8.30	-11.1	V	3.0	-23.2	35.2	1.0	-51.5	-13.0	-44.3	
2.51 .79.2 H 3.0 .35.0 37.1 1.0 .71.1 .13.0 .58.1 3.35 .78.5 H 3.0 .30.7 37.8 1.0 .67.5 .13.0 .54.5 4.21 .75.9 H 3.0 .27.5 37.0 1.0 .63.5 .13.0 .50.5 5.06 .76.8 H 3.0 .26.7 36.9 1.0 .62.6 .13.0 .49.6	ligh Channel	(839MHz)									
3.35 -78.5 H 3.0 -30.7 37.8 1.0 -67.5 -13.0 -54.5 4.21 -75.9 H 3.0 -27.5 37.0 1.0 -63.5 -13.0 -50.5 5.06 -76.8 H 3.0 -26.7 36.9 1.0 -62.6 -13.0 -49.6			Н	3.0	-35.0	37.1	1.0	-71.1	-13.0	-58.1	
5.06 -76.8 H 3.0 -26.7 36.9 1.0 -62.6 -13.0 49.6		-78.5	Н			37.8		-67.5			
b./ŏ -/ŏ.∠ H 3.0 -25.3 3b.4 1.0 -60.8 -13.0 -4/.8											
8.41 -77.3 H 3.0 -22.5 35.1 1.0 -56.6 -13.0 -43.6											
8.41 -77.3 H 3.0 -22.5 35.1 1.0 -56.6 -13.0 -43.6 1.66 -81.8 V 3.0 -41.0 37.7 1.0 -77.8 -13.0 -64.8											
1.00 -01.0 V 3.0 -41.0 37.7 1.0 -77.0 -04.0 55.90 -76.2 V 3.0 -24.7 36.7 1.0 -77.0 -13.0 47.4											
7.60 -77.5 V 3.0 -23.8 35.9 1.0 -58.6 -13.0 -45.6											

Page 912 of 929

9.5.4. LTE BAND 7

QPSK EIRP POWER FOR LTE BAND 7 (20.0MHZ BANDWIDTH)

			-	titution Meas ated Chambe						
		0211			•					
Company										
Project #:		15U21635								
Date:		09/08/15								
Test Engi		W. Chie								
Configura		EUT Only								
Mode:		LTE Band 7, 20	UMHZ QPSK							
Test Equi	nment:									
	on: Horn T59 Sub	stitution an	d 8ft SMA Ca	hle						
oubotitut		ontation, an		bie						
							1			
	Chambe	r l	Pre	-amplifer		Filter			Limit	
	onambo									
			-				4			
	3m Chamber H	•	3m Cł	namber H 🚽	Filter	-	1	LTE B	7	-
	3m Chamber H	•	3m Cł	namber H 💂	Filter	•		LTE B	7	•
	3m Chamber H	T	3m Cł	namber H 🖵	Filter	-		LTE B	7	•
	3m Chamber H	T	3m Cł		Filter	•		LTE B	7	•
				EIRP @ TX				I		
Frequen	cy SA reading	Ant. Pol.	3m Cł Distance	EIRP @ TX Ant End	Filter Preamp	- Attenuator	EIRP	LTE B	7 Delta	• Notes
(GHz)	cy SA reading (dBm)			EIRP @ TX				I		
(GHz) Low Chan	cy SA reading (dBm) rel (2510MHz)	Ant. Pol. (H/V)	Distance	EIRP @ TX Ant End (dBm)	Preamp	Attenuator	EIRP	Limit	Delta	
(GHz) Low Chan 5.05	cy SA reading (dBm) hel (2510MHz) -67.8	Ant. Pol. (H/V) H	Distance	EIRP @ TX Ant End (dBm) -17.7	Preamp 36.9	Attenuator	EIRP -53.6	Limit	Delta -28.6	
(GHz) Low Chan	cy SA reading (dBm) rel (2510MHz)	Ant. Pol. (H/V)	Distance	EIRP @ TX Ant End (dBm)	Preamp	Attenuator	EIRP	Limit	Delta	
(GHz) Low Chan 5.05 7.51	cy SA reading (dBm) iel (2510MHz) -67.8 -65.3	Ant. Pol. (H/V) H	Distance 3.0 3.0	EIRP @ TX Ant End (dBm) -17.7 -11.5	Preamp 36.9 35.9	Attenuator	EIRP -53.6 -46.4	Limit -25.0 -25.0	Delta -28.6 -21.4	
(GHz) Low Chan 5.05 7.51 5.05 7.51	cy SA reading (dBm) rel (2510MHz) -67.8 -65.3 -67.0 -64.1	Ant. Pol. (H/V) H H V	Distance 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -17.7 -11.5 -16.7	Preamp 36.9 35.9 36.9	Attenuator 1.0 1.0 1.0	EIRP -53.6 -46.4 -52.6	Limit -25.0 -25.0 -25.0	Delta -28.6 -21.4 -27.6	
(GHz) Low Chann 5.05 7.51 5.05 7.51 Mid Chann	cy SA reading (dBm) 1el (2510MHz) -67.8 -65.3 -67.0 -64.1 el (2535MHz)	Ant. Pol. (H/V) H H V V	Distance	EIRP @ TX Ant End (dBm) -17.7 -11.5 -16.7 -10.5	Preamp 36.9 35.9 36.9 35.9	Attenuator 1.0 1.0 1.0 1.0	-53.6 -46.4 -52.6 -45.5	Limit -25.0 -25.0 -25.0 -25.0	Delta -28.6 -21.4 -27.6 -20.5	
(GHz) Low Chan 5.05 7.51 5.05 7.51 Mid Chann 5.08	cy SA reading (dBm) hel (2510MHz) -67.8 -65.3 -67.0 -64.1 el (2535MHz) -67.5	Ant. Pol. (H/V) H H V V	Distance	EIRP @ TX Ant End (dBm) -17.7 -11.5 -16.7 -10.5 -17.4	Preamp 36.9 35.9 35.9 35.9 36.9	Attenuator 1.0 1.0 1.0 1.0 1.0 1.0	EIRP -53.6 -46.4 -52.6 -45.5 -53.2	Limit -25.0 -25.0 -25.0 -25.0 -25.0	Delta -28.6 -21.4 -27.6 -20.5 -28.2	
(GHz) Low Chann 5.05 7.51 5.05 7.51 Mid Chann	cy SA reading (dBm) 1el (2510MHz) -67.8 -65.3 -67.0 -64.1 el (2535MHz)	Ant. Pol. (H/V) H H V V	Distance	EIRP @ TX Ant End (dBm) -17.7 -11.5 -16.7 -10.5 -17.4 -17.4 -8.2	Preamp 36.9 35.9 36.9 35.9	Attenuator 1.0 1.0 1.0 1.0	-53.6 -46.4 -52.6 -45.5	Limit -25.0 -25.0 -25.0 -25.0	Delta -28.6 -21.4 -27.6 -20.5	
(GHz) Low Cham 5.05 7.51 5.05 7.51 Mid Chann 5.08 7.58	cy SA reading (dBm) 1el (2510MHz) -67.8 -65.3 -67.0 -64.1 el (2535MHz) -67.5 -62.1	Ant. Pol. (H/V) H H V V V H H	Distance	EIRP @ TX Ant End (dBm) -17.7 -11.5 -16.7 -10.5 -17.4	Preamp 36.9 35.9 36.9 35.9 36.9 35.9	Attenuator 1.0 1.0 1.0 1.0 1.0 1.0 1.0	EIRP -53.6 -46.4 -52.6 -45.5 -53.2 -53.2 -43.1	Limit -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	Delta -28.6 -21.4 -27.6 -20.5 -20.5 -28.2 -18.1	
(GHz) 5.05 7.51 5.05 7.51 5.05 7.51 Mid Chann 5.08 7.58 5.08 7.58	cy SA reading (dBm) 1el (2510MHz) -67.8 -65.3 -67.0 -64.1 -64.1 -64.1 -65.1 -66.1 -66.1 -61.8	Ant. Pol. (H/V) H H V V V H H H V	Distance 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -17.7 -11.5 -16.7 -10.5 - -17.4 -8.2 -15.7	Preamp 36.9 35.9 36.9 35.9 36.9 36.9 36.9 36.9	Attenuator 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	EIRP -53.6 -46.4 -52.6 -45.5 -53.2 -53.2 -43.1 -51.6	Limit -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	Delta -28.6 -21.4 -27.6 -20.5 -28.2 -18.1 -26.6	
(GHz) -ow Chan 5.05 7.51 5.05 7.51 Wid Chan 5.08 7.58 5.08 7.58 5.08 7.58	cy SA reading (dBm) -67.8 -67.8 -65.3 -67.0 -64.1 -64.1 -61.1 -62.1 -66.1 -61.8 -61.8 -61.8 -61.8	Ant. Pol. (H/V) H H V V V H H H V V V V	Distance	EIRP @ TX Ant End (dBm) -17.7 -11.5 -16.7 -10.5 - - -17.4 -8.2 -15.7 -8.1	Preamp 36.9 35.9 36.9 35.9 36.9 35.9 36.9 35.9 36.9 35.9 36.9 35.9	Attenuator 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	EIRP -53.6 -46.4 -52.6 -45.5 -53.2 -53.2 -43.1 -51.6 -42.9	Limit -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	Delta -28.6 -21.4 -27.6 -20.5 -20.5 -28.2 -18.1 -26.6 -17.9	
(GHz) -ow Chann 5.05 7.51 5.05 7.51 Viid Chann 5.08 7.58 5.08 7.58 	cy SA reading (dBm) hel (2510MHz) -67.8 -65.3 -67.0 -64.1 -61.1 -67.5 -62.1 -66.1 -61.8 -61.8 -61.8 -61.8 -61.8 -61.8 -61.8	Ant. Pol. (H/V) H H V V V V V V V H H H	Distance 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -17.7 -11.5 -16.7 -10.5 -17.4 -8.2 -15.7 -8.1 -17.6	Preamp 36.9 35.9 36.9 35.9 36.9 36.9 35.9 36.9 35.9 36.9 35.9 36.9 35.9	Attenuator 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	EIRP -53.6 -46.4 -52.6 -45.5 -53.2 -43.1 -51.6 -42.9 -53.5	Limit -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	Delta -28.6 -21.4 -27.6 -20.5 -28.2 -18.1 -26.6 -17.9 -28.5	
(GHz) -ow Chan 5.05 7.51 5.05 7.51 Wid Chan 5.08 7.58 5.08 7.58 5.08 7.58	cy SA reading (dBm) -67.8 -67.8 -65.3 -67.0 -64.1 -64.1 -61.1 -62.1 -66.1 -61.8 -61.8 -61.8 -61.8	Ant. Pol. (H/V) H H V V V H H H V V V V	Distance	EIRP @ TX Ant End (dBm) -17.7 -11.5 -16.7 -10.5 - - -17.4 -8.2 -15.7 -8.1	Preamp 36.9 35.9 36.9 35.9 36.9 35.9 36.9 35.9 36.9 35.9 36.9 35.9	Attenuator 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	EIRP -53.6 -46.4 -52.6 -45.5 -53.2 -53.2 -43.1 -51.6 -42.9	Limit -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	Delta -28.6 -21.4 -27.6 -20.5 -20.5 -28.2 -18.1 -26.6 -17.9	

Page 913 of 929

16QAM EIRP POWER FOR LTE BAND 7 (20.0MHZ BANDWIDTH)

				stitution Meas iated Chambo						
Company:										
Project #:		15U21635								
Date:		Sept. 8, 2015								
Test Engiı	neer:	W. Chie								
Configura	tion:	EUT Only								
Mode:		LTE Band 7, 20	MHz 16QAM							
<u>Test Equi</u> j Substitutio	oment:_ on: Horn T59 Sub	ostitution, and	d 8ft SMA Ca	able						
	Chambe	ər	Pre	e-amplifer		Filter			Limit	
Γ	3m Chamber H	•	3m C	hamber H 🚽	Filter	•	•	LTE B	7	•
										8
Frequenc (GHz)	cy SA reading (dBm)	Ant. Pol. (H/V)	Distance	EIRP @ TX Ant End (dBm)	Preamp	Attenuator	EIRP	Limit	Delta	Notes
(GHz) Low Chann		(H/V)	Distance	Ant End (dBm)	Preamp	Attenuator				Notes
(GHz) Low Chann 5.05	(dBm) el (2510MHz) -67.3	(H/V) н	3.0	Ant End (dBm)	36.9	1.0	-53.1	-25.0	-28.1	Notes
(GHz) Low Chann 5.05 7.51	(dBm) el (2510MHz) -67.3 -65.9	(H/V) н н	3.0 3.0	Ant End (dBm) -17.2 -12.1	36.9 35.9	1.0 1.0	-53.1 -47.0	-25.0 -25.0	-28.1 -22.0	Notes
(GHz) Low Chann 5.05	(dBm) el (2510MHz) -67.3	(H/V) н	3.0	Ant End (dBm)	36.9	1.0	-53.1	-25.0	-28.1	Notes
(GHz) Low Chann 5.05 7.51 5.05 7.51	(dBm) el (2510MHz) -67.3 -65.9 -66.2 -65.4	(H/V) H H V	3.0 3.0 3.0	Ant End (dBm) -17.2 -12.1 -15.9	36.9 35.9 36.9	1.0 1.0 1.0	-53.1 -47.0 -51.8	-25.0 -25.0 -25.0	-28.1 -22.0 -26.8	Notes
(GHz) Low Chann 5.05 7.51 5.05 7.51 Mid Channe	(dBm) el (2510MHz) -67.3 -65.9 -66.2 -65.4 el (2535MHz)	(H/V) H H V V	3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -17.2 -12.1 -15.9 -11.8	36.9 35.9 36.9 35.9	1.0 1.0 1.0 1.0	-53.1 -47.0 -51.8 -46.7	-25.0 -25.0 -25.0 -25.0	-28.1 -22.0 -26.8 -21.7	Notes
(GHz) Low Chann 5.05 7.51 5.05 7.51 Mid Channe 5.05	(dBm) el (2510MHz) -67.3 -65.9 -66.2 -65.4 -65.4 -65.4 -65.4 -65.4 -66.3	<u>(H/V)</u> н ч v v	3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -17.2 -12.1 -15.9 -11.8 -11.8 -16.2	36.9 35.9 36.9 35.9 35.9 36.9	1.0 1.0 1.0 1.0 1.0	-53.1 -47.0 -51.8 -46.7 -52.1	-25.0 -25.0 -25.0 -25.0 -25.0	-28.1 -22.0 -26.8 -21.7 -27.1	Notes
(GHz) Low Chann 5.05 7.51 5.05 7.51 Mid Channe 5.05 7.58	(dBm) el (2510MHz) -67.3 -65.9 -66.2 -65.4 el (2535MHz) -66.3 -64.5	(H/V) H H V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -17.2 -12.1 -15.9 -11.8 -16.2 -10.6	36.9 35.9 36.9 35.9 35.9 36.9 36.9 35.9	1.0 1.0 1.0 1.0	-53.1 -47.0 -51.8 -46.7 -52.1 -45.5	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-28.1 -22.0 -26.8 -21.7 -27.1 -27.1	Notes
(GHz) Low Chann 5.05 7.51 5.05 7.51 Mid Channe 5.05	(dBm) el (2510MHz) -67.3 -65.9 -66.2 -65.4 -65.4 -65.4 -65.4 -65.4 -66.3	(H/V) H V V H H	3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -17.2 -12.1 -15.9 -11.8 -11.8 -16.2	36.9 35.9 36.9 35.9 35.9 36.9	1.0 1.0 1.0 1.0 1.0 1.0	-53.1 -47.0 -51.8 -46.7 -52.1	-25.0 -25.0 -25.0 -25.0 -25.0	-28.1 -22.0 -26.8 -21.7 -27.1	Notes
(GHz) Low Chann 5.05 7.51 5.05 7.51 Mid Channe 5.05 7.58 5.05 7.58	(dBm) el (2510MHz) -67.3 -65.9 -66.2 -65.4 el (2535MHz) -66.3 -64.5 -65.9 -62.4	(H/V) H V V H H V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -17.2 -12.1 -15.9 -11.8 -16.2 -10.6 -15.6	36.9 35.9 36.9 35.9 36.9 36.9 36.9 36.9	1.0 1.0 1.0 1.0 1.0 1.0 1.0	-53.1 -47.0 -51.8 -46.7 -52.1 -45.5 -51.5	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-28.1 -22.0 -26.8 -21.7 -27.1 -20.5 -26.5	Notes
(GHz) Low Chann 5.05 7.51 5.05 7.51 Mid Channe 5.05 7.58 5.05 7.58	(dBm) el (2510MHz) -67.3 -65.9 -66.2 -65.4 -66.2 -65.4 -66.3 -66.3 -64.5 -65.9	(H/V) H V V H H V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -17.2 -12.1 -15.9 -11.8 -16.2 -10.6 -15.6	36.9 35.9 36.9 35.9 36.9 36.9 36.9 36.9	1.0 1.0 1.0 1.0 1.0 1.0 1.0	-53.1 -47.0 -51.8 -46.7 -52.1 -45.5 -51.5	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-28.1 -22.0 -26.8 -21.7 -27.1 -20.5 -26.5	Notes
(GHz) Low Chann 5.05 7.51 5.05 7.51 Mid Channe 5.05 7.58 5.05 7.58 5.05 7.58	(dBm) el (2510MHz) -67.3 -65.9 -66.2 -65.4 -65.4 -64.5 -66.3 -64.5 -65.9 -62.4 -62.4 -62.4 -62.4 -62.4 -62.4	(H/V) H V V H H V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -17.2 -12.1 -15.9 -11.8 -16.2 -10.6 -15.6 -8.7	36.9 35.9 36.9 35.9 36.9 35.9 35.9 35.9 35.9 35.9	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-53.1 -47.0 -51.8 -46.7 -52.1 -45.5 -51.5 -43.6	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-28.1 -22.0 -26.8 -21.7 -27.1 -20.5 -26.5 -18.6	Notes
(GHz) Low Chann 5.05 7.51 5.05 7.51 Mid Channe 5.05 7.58 5.05 7.58 High Chann 5.11	(dBm) el (2510MHz) -67.3 -65.9 -66.2 -65.4 -65.4 -62.4 -64.5 -65.9 -62.4 -62.4 -62.4 -62.4 -62.4 -62.4 -62.4 -62.4	(H/V) H V V H H H H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -17.2 -12.1 -15.9 -11.8 -16.2 -10.6 -15.6 -8.7 -8.7 -16.9	36.9 35.9 36.9 35.9 36.9 35.9 36.9 35.9 35.9 35.9 36.8	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-53.1 -47.0 -51.8 -46.7 -52.1 -45.5 -51.5 -43.6 -52.7	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-28.1 -22.0 -26.8 -21.7 -27.1 -20.5 -26.5 -18.6 -27.7	Notes

Page 914 of 929

9.5.5. LTE BAND 12

QPSK EIRP POWER FOR LTE BAND 12 (10.0MHZ BANDWIDTH)

			-	titution Meas ated Chambe						
_										
Company:										
Project #:		15U21635								
Date:		Sept. 8, 2015								
Test Engin		W. Chie								
Configurati	on:	EUT Only								
Mode:		LTE Band 12,	10MHz QPSK							
	Chambe	er	Pre	-amplifer		Filter			Limit	
:	Bm Chamber H	•	3m Cl	namber H 🚽	Filte		•	EIRP		•
Frequenc	/ SA reading	Ant. Pol.		EIRP @ TX Ant End	Filte		EIRP	EIRP	Delta	v
Frequenc (GHz)	/ SA reading (dBm)	Ant. Pol. (H/V)		EIRP @ TX		r			Delta	• Notes
Frequenc (GHz) Low Channe	/ SA reading (dBm) I (704MHz)	(H/V)	Distance	EIRP @ TX Ant End (dBm)	Preamp	Attenuator	EIRP	Limit		Notes
Frequenc (GHz)	/ SA reading (dBm)			EIRP @ TX Ant End		r			Delta -66.5 -61.3	v
Frequenc (GHz) Low Channe 1.41	/ SA reading (dBm) I (704MHz) -82.1	(H/V) н н v	Distance	EIRP @ TX Ant End (dBm) -43.2	Preamp 37.4	Attenuator	EIRP -79.5	Limit	-66.5	Notes
Frequenc (GHz) Low Channe 1.41 2.14	V SA reading (dBm) I (704MHz) -82.1 -80.9	(H/V) н н	Distance 3.0 3.0	EIRP @ TX Ant End (dBm) -43.2 -37.7	Preamp 37.4 37.6	Attenuator	EIRP -79.5 -74.3	Limit -13.0 -13.0	-66.5 -61.3	Notes
Frequenc (GHz) ow Channe 1.41 2.14 1.41 2.14	/ SA reading (dBm) I (704MHz) -82.1 -80.9 -81.6 -80.3	(H/V) н н v	Distance 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -43.2 -37.7 -42.3	Preamp 37.4 37.6 37.4	Attenuator	EIRP -79.5 -74.3 -78.7	Limit -13.0 -13.0 -13.0	-66.5 -61.3 -65.7	Notes
Frequenc; (GHz) Low Channe 1.41 2.14 1.41 2.14 Mid Channe	/ SA reading (dBm) 1 (704MHz) -82.1 -80.9 -81.6 -80.3 (782MHz)	(H/V) H H V V	Distance	EIRP @ TX Ant End (dBm) -43.2 -37.7 -42.3 -37.2	Preamp 37.4 37.6 37.4 37.6	Attenuator	EIRP -79.5 -74.3 -78.7 -73.8	Limit -13.0 -13.0 -13.0 -13.0	-66.5 -61.3 -65.7 -60.8	Notes
Frequenc (GHz) Low Channe 1.41 2.14 1.41 2.14 Mid Channe 2.09	/ SA reading (dBm) 1 (704MHz) 	(H/V) Н Ч V V	Distance 3.0 3.0 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -43.2 -37.7 -42.3 -37.2 -37.3	Preamp 37.4 37.6 37.4 37.6 37.7	Attenuator 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	EIRP -79.5 -74.3 -78.7 -73.8 -74.0	Limit -13.0 -13.0 -13.0 -13.0 -13.0	-66.5 -61.3 -65.7 -60.8 -61.0	Notes
Frequenc; (GHz) Low Channe 1.41 2.14 1.41 2.14 Mid Channe	/ SA reading (dBm) 1 (704MHz) 82.1 80.9 81.6 80.3 (782MHz)	(H/V) H H V V	Distance	EIRP @ TX Ant End (dBm) -43.2 -37.7 -42.3 -37.2	Preamp 37.4 37.6 37.4 37.6	Attenuator	EIRP -79.5 -74.3 -78.7 -73.8	Limit -13.0 -13.0 -13.0 -13.0	-66.5 -61.3 -65.7 -60.8	Notes
Frequenc (GHz) ow Channe 1.41 2.14 1.41 2.14 Wid Channe 2.09 1.39	/ SA reading (dBm) 1 (704MHz) 82.1 80.9 81.6 80.3 (782MHz) 80.3 80.3 82.2	(H/V) Н Ч V V	Distance 3.0 3.0 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -43.2 -37.7 -42.3 -37.2 -37.3	Preamp 37.4 37.6 37.4 37.6 37.7	Attenuator 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	EIRP -79.5 -74.3 -78.7 -73.8 -74.0	Limit -13.0 -13.0 -13.0 -13.0 -13.0	-66.5 -61.3 -65.7 -60.8 -61.0	Notes
Frequenc, (GHz) ow Channe 1.41 2.14 1.41 2.14 Viid Channe 2.09 1.39 iigh Channe 1.46	/ SA reading (dBm) 1 (704MHz) - 82.1 - 80.9 - 81.6 - 80.3 (782MHz) - 80.3 - 82.2 - 82.2 - 82.2	(H/V) H V V H H	Distance 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -43.2 -37.7 -42.3 -37.2 -37.3 -43.0 -43.3	Preamp 37.4 37.6 37.4 37.6 37.7 37.3 37.5	Attenuator 1.0	EIRP -79.5 -74.3 -78.7 -73.8 -73.8 -74.0 -79.3	Limit -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	-66.5 -61.3 -65.7 -60.8 -61.0 -66.3 -66.9	Notes
Frequenc; (GHz) Low Channe 1.41 2.14 1.41 2.14 Mid Channe 2.09 1.39 High Channe 1.46 2.14	/ SA reading (dBm) (704MHz) -82.1 -80.9 -81.6 -80.3 (782MHz) -80.3 -82.2 (711MHz) -82.5 -81.3	(H/V) H V V H V H H	Distance 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -43.2 -37.7 -42.3 -37.2 -37.3 -43.0 -43.3 -38.1	Preamp 37.4 37.6 37.4 37.6 37.7 37.3 37.3 37.5 37.6	Attenuator 1.0	EIRP -79.5 -74.3 -78.7 -73.8 -73.8 -74.0 -79.3 -79.9 -74.7	Limit -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	-66.5 -61.3 -65.7 -60.8 -61.0 -66.3 -66.3 -66.9 -61.7	Notes
Frequenc; (GHz) Low Channe 1.41 2.14 1.41 2.14 Mid Channe 2.09 1.39 High Channe 1.46	/ SA reading (dBm) 1 (704MHz) - 82.1 - 80.9 - 81.6 - 80.3 (782MHz) - 80.3 - 82.2 - 82.2 - 82.2	(H/V) H V V H H	Distance 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -43.2 -37.7 -42.3 -37.2 -37.3 -43.0 -43.3	Preamp 37.4 37.6 37.4 37.6 37.7 37.3 37.5	Attenuator 1.0	EIRP -79.5 -74.3 -78.7 -73.8 -73.8 -74.0 -79.3	Limit -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	-66.5 -61.3 -65.7 -60.8 -61.0 -66.3 -66.9	Notes

Page 915 of 929

16QAM EIRP POWER FOR LTE BAND 12 (10.0MHZ BANDWIDTH)

				titution Meas ated Chambe						
Company										
Project #:		15U21635								
Date:		Sept. 8, 2015								
Test Engi		W. Chie								
Configura		EUT Only								
Mode:		LTE Band 12, 1	10MHz 16QAM							
Test Equi	pment:									
	ion: Horn T59 Sub	stitution. an	d 8ft SMA Ca	ble						
		,								
							-			
	Chamb	er	Pre	e-amplifer		Filter			Limit	
	3m Chamber H	•	3m C	hamber H 🚽	Filte	r	-	EIRP		•
	3m Chamber H	•	3m C	hamber H 🚽	Filte	r	•	EIRP		•
	3m Chamber H	•	3m C		Filte	r	-	EIRP		
Frequen				EIRP @ TX			FIRP		Delta	
	cy SA reading	Ant. Pol.	3m C Distance	EIRP @ TX Ant End	Filte	r Attenuator	EIRP	EIRP	Delta	• Notes
(GHz)	cy SA reading (dBm)			EIRP @ TX			EIRP		Delta	
(GHz) Low Chani	cy SA reading (dBm) nel (704MHz)	Ant. Pol. (H/V)	Distance	EIRP @ TX Ant End (dBm)	Preamp	Attenuator		Limit		
	cy SA reading (dBm)	Ant. Pol.		EIRP @ TX Ant End			EIRP		Delta -66.7 -61.0	
(GHz) Low Chani 1.43 2.14 1.43	cy SA reading (dBm) nel (704MHz) -82.3 -80.6 -81.9	Ant. Pol. (H/V) H H V	Distance 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -43.3	Preamp 37.4 37.6 37.4	Attenuator 1.0 1.0 1.0	-79.7 -74.0 -79.0	Limit -13.0 -13.0 -13.0	-66.7 -61.0 -66.0	
(GHz) Low Chan 1.43 2.14	cy SA reading (dBm) nel (704MHz) -82.3 -80.6	Ant. Pol. (H/V) H	Distance 3.0 3.0	EIRP @ TX Ant End (dBm) -43.3 -37.4	Preamp 37.4 37.6	Attenuator	-79.7 -74.0	Limit -13.0 -13.0	-66.7 -61.0	
(GHz) Low Chann 1.43 2.14 1.43 2.14	cy SA reading (dBm) nel (704Mtz) -82.3 -80.6 -81.9 -80.1	Ant. Pol. (H/V) H H V	Distance 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -43.3 -37.4 -42.6	Preamp 37.4 37.6 37.4	Attenuator 1.0 1.0 1.0	-79.7 -74.0 -79.0	Limit -13.0 -13.0 -13.0	-66.7 -61.0 -66.0	
(GHz) Low Chanr 1.43 2.14 1.43 2.14 Mid Chann	cy SA reading (dBm) -82.3 -80.6 -81.9 -80.1 el (782MHz)	Ant. Pol. (H/V) H H V V	Distance 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -43.3 -37.4 -42.6 -37.0	Preamp 37.4 37.6 37.4 37.6	Attenuator 1.0 1.0 1.0 1.0	-79.7 -74.0 -79.0 -73.6	Limit -13.0 -13.0 -13.0 -13.0	-66.7 -61.0 -66.0 -60.6	
(GHz) Low Chann 1.43 2.14 1.43 2.14 Mid Chann 1.39	cy SA reading (dBm) nel (704MHz) -82.3 -80.6 -81.9 -80.1 -80.1 -80.1 -82.1	Ant. Pol. (H/V) H H V V	Distance 3.0 3.0 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -43.3 -37.4 -42.6 -37.0 -43.3	Preamp 37.4 37.6 37.6 37.6 37.3	Attenuator 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-79.7 -74.0 -79.0 -73.6 -79.6	Limit -13.0 -13.0 -13.0 -13.0 -13.0	-66.7 -61.0 -66.0 -60.6 -66.6	
(GHz) Low Chanr 1.43 2.14 1.43 2.14 Mid Chann	cy SA reading (dBm) -82.3 -80.6 -81.9 -80.1 el (782MHz)	Ant. Pol. (H/V) H H V V	Distance 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -43.3 -37.4 -42.6 -37.0	Preamp 37.4 37.6 37.4 37.6	Attenuator 1.0 1.0 1.0 1.0	-79.7 -74.0 -79.0 -73.6	Limit -13.0 -13.0 -13.0 -13.0	-66.7 -61.0 -66.0 -60.6	
(GHz) Low Chann 1.43 2.14 1.43 2.14 Mid Chann 1.39 2.14 High Chan	cy SA reading (dBm) nel (704MHz) -82.3 -80.6 -81.9 -80.1 -80.1 -80.1 -80.6 -80.6 -81.9 -80.6 -80.6 -81.9 -80.6 -80.6 -81.9 -80.6 -81.9 -80.6 -81.9 -80.6 -81.9 -82.1 -80.6 -81.9 -82.1 -80.6 -81.9 -82.1 -80.6 -81.9 -82.1 -80.6 -81.9 -82.1 -80.6 -81.9 -82.1 -80.6 -81.9 -82.1 -80.6 -81.9 -82.1 -80.6 -81.9 -82.1 -80.6 -81.9 -82.1 -80.6 -81.9 -80.6 -81.9 -82.1 -80.6 -81.9 -82.1 -80.6 -81.9 -82.1 -80.6 -81.9 -82.1 -80.6 -81.9 -82.1 -80.6 -81.9 -82.1 -80.6 -81.9 -82.1 -80.6 -81.9 -82.1 -80.6 -81.9 -82.1 -80.6 -81.9 -82.1 -80.6 -81.9 -80.6 -81.9 -80.6 -81.9 -82.1 -80.6 -81.9 -81.9 -81	Ant. Pol. (H/V) H V V V	Distance 3.0 3.0 3.0 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -43.3 -37.4 -42.6 -37.0 -43.3 -37.4 -43.3 -37.4	Preamp 37.4 37.6 37.6 37.6 37.6 37.3 37.6	Attenuator 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-79.7 -74.0 -79.0 -73.6 -79.6 -74.1	Limit -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	-66.7 -61.0 -66.0 -60.6 -66.6 -61.1	
(GHz) Low Chann 1.43 2.14 1.43 2.14 Mid Chann 1.39 2.14	cy SA reading (dBm) -82.3 -80.6 -81.9 -80.1 -80.1 -82.1 -82.1 -80.6	Ant. Pol. (H/V) H H V V	Distance 3.0 3.0 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -43.3 -37.4 -42.6 -37.0 -43.3	Preamp 37.4 37.6 37.6 37.6 37.3	Attenuator 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-79.7 -74.0 -79.0 -73.6 -79.6	Limit -13.0 -13.0 -13.0 -13.0 -13.0	-66.7 -61.0 -66.0 -60.6 -66.6	

Page 916 of 929

9.5.6. LTE BAND 17

QPSK EIRP POWER FOR LTE BAND 17 (10.0MHZ BANDWIDTH)

				ubstitution Meas adiated Chambe						
Company:										
Project #:		15U21635								
Date:		Sept. 8, 2015								
Test Engine		W. Chie								
Configuratio		EUT Only								
Mode:		LTE Band 17, 1	10MHz OPS	SK						
	<u>nent:</u> 1: Horn T59 Sub	stitution, and	d 8ft SMA	Cable						
Test Equipn Substitution				Cable Pre-amplifer		Filter			Limit	
Substitution	n: Horn T59 Sub				Filte		•	EIRP	Limit	•
Substitution	n: Horn T59 Sub Chambo 3m Chamber H			Pre-amplifer m Chamber H	Filte		EIRP	EIRP	Limit	• Notes
Substitution	Chambe Chambe 3m Chamber H / SA reading (dBm) (710MHz)	er v Ant. Pol. (H/V)	3n Distanc	Pre-amplifer m Chamber H - EIRP @ TX Ant End (dBm)	Preamp	r Attenuator	EIRP	Limit	Delta	
Substitution Frequency (GHz) Mid Channel 1.43	Chamber Chamber 3m Chamber H (SA reading (dBm) (710MHz) -82.3	Ant. Pol. (H/V)	3n Distanc 3.0	Pre-amplifer m Chamber H EIRP @ TX Ant End (dBm)	Preamp	r Attenuator	EIRP	Limit	Delta -66.7	
Substitution	Chambe Chambe 3m Chamber H / SA reading (dBm) (710MHz)	er v Ant. Pol. (H/V)	3n Distanc	Pre-amplifer m Chamber H - EIRP @ TX Ant End (dBm)	Preamp	r Attenuator	EIRP	Limit	Delta	

Page 917 of 929

16QAM EIRP POWER FOR LTE BAND 17 (10.0MHZ BANDWIDTH)

				titution Measu						
		UL Fr	emont Radia	ated Chambe	r					
Company:										
Project #:		15U21635								
Date:		Sept. 8, 2015								
est Engi	neer:	W. Chie								
Configura	tion:	EUT Only								
Mode:		LTE Band 17, 1	10MHz 16QAM							
	<u>pment:</u> on: Horn T59 S					Filter			1 inclu	
	on: Horn T59 S Cham	ber	Pro	e-amplifer		Filter			Limit	
	on: Horn T59 S	ber	Pro		Filte		•	EIRP		•
	on: Horn T59 S Cham	ber	Pro	e-amplifer	Filte		•	EIRP		•
	on: Horn T59 S Cham	ber	Pro	e-amplifer	Filte		-	EIRP		¥
	on: Horn T59 S Cham 3m Chamber H	ber	Pro	e-amplifer hamber H 🖵	Filte		EIRP	EIRP		• Notes
Substituti Frequend (GHz)	on: Horn T59 S Cham 3m Chamber H cy SA reading (dBm)	ber	Pro 3m C	e-amplifer hamber H 🖵 EIRP @ TX		r		J		
Substituti Frequen (GHz) Vid Chann	on: Horn T59 S Cham 3m Chamber H cy SA reading (dBm) el (710MHz)	ber	Pro 3m C Distance	e-amplifer hamber H - EIRP @ TX Ant End (dBm)	Preamp	r Attenuator	EIRP	Limit	Delta	
Substituti Frequend (GHz)	on: Horn T59 S Cham 3m Chamber H cy SA reading (dBm)	ber	Pro 3m C	e-amplifer hamber H - EIRP @ TX Ant End		r		J		

Page 918 of 929

9.5.7. LTE BAND 25

QPSK EIRP POWER FOR LTE BAND 25 (20.0MHZ BANDWIDTH)

				titution Meas ated Chambe						
_										
Company										
Project #:		15U21635								
Date: Test Engi		Sept. 8, 2015 W. Chie								
Configura										
Mode:		EUT Only	20MHz QPSK							
		bana 20,								
Test Equi	ipment:									
	ion: Horn T59 Sul	ostitution, an	nd 8ft SMA Ca	ble						
										-
	Chambe	er	Pre	-amplifer		Filter			Limit	
_							4			_
	3m Chamber H	•	3m Cł	namber H 🚽	Filter	· •	-	EIRP		*
I			1		ļ		_	I		_
L			1			-	_	I		
1			I	EIRP @ TX	Į	-	_	I		
Frequen	cy SA reading	Ant. Pol.	Distance	EIRP @ TX Ant End	Preamp	Attenuator	EIRP	Limit	Delta	Notes
Frequen (GHz)		Ant. Pol. (H/V)	Distance		Preamp	Attenuator	EIRP	Limit	Delta	Notes
(GHz) Low Chani	(dBm) nel (1860MHz)	(H/V)		Ant End (dBm)	•					Notes
(GHz) Low Chanı 3.69	(dBm) nel (1860MHz) -65.0	(H/V) н	3.0	Ant End (dBm) -17.0	37.4	1.0	-53.4	-13.0	-40.4	Notes
(GHz) Low Chani 3.69 5.61	(dBm) nel (1860MHz) -65.0 -65.7	(H/V) н н	3.0 3.0	Ant End (dBm) -17.0 -14.7	37.4 36.7	1.0 1.0	-53.4 -50.4	-13.0 -13.0	-40.4 -37.4	Notes
(GHz) Low Chani 3.69 5.61 3.69	(dBm) nel (1860MHz) -65.0 -65.7 -65.3	(H/V) н	3.0 3.0 3.0	Ant End (dBm) -17.0 -14.7 -17.6	37.4 36.7 37.4	1.0 1.0 1.0	-53.4 -50.4 -54.1	-13.0 -13.0 -13.0	-40.4 -37.4 -41.1	Notes
(GHz) Low Chani 3.69 5.61	(dBm) nel (1860MHz) -65.0 -65.7	(H/V) H H V	3.0 3.0	Ant End (dBm) -17.0 -14.7	37.4 36.7	1.0 1.0	-53.4 -50.4	-13.0 -13.0	-40.4 -37.4	Notes
(GHz) Low Chan 3.69 5.61 3.69 5.61 Mid Chann	(dBm) nel (1860MHz) -65.0 -65.7 -65.3 -66.8 rel (1882.5MHz)	(H/V) н ч v	3.0 3.0 3.0 3.0	Ant End (dBm) -17.0 -14.7 -17.6 -15.7	37.4 36.7 37.4 36.7	1.0 1.0 1.0 1.0	-53.4 -50.4 -54.1 -51.4	-13.0 -13.0 -13.0 -13.0 -13.0	-40.4 -37.4 -41.1 -38.4	Notes
(GHz) Low Chann 3.69 5.61 3.69 5.61 Mid Chann 3.79	(dBm) nel (1860MHz) -65.0 -65.7 -65.3 -66.8 el (1882.5MHz) -65.1	(H/V) Н Ч V	3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -17.0 -14.7 -17.6 -15.7 -17.1	37.4 36.7 37.4 36.7 37.3	1.0 1.0 1.0 1.0 1.0	-53.4 -50.4 -54.1 -51.4 -53.4	-13.0 -13.0 -13.0 -13.0 -13.0	-40.4 -37.4 -41.1 -38.4 -40.4	Notes
(GHz) Low Chann 3.69 5.61 3.69 5.61 Mid Chann 3.79 5.62	(dBm) nel (1860MHz) -65.0 -65.7 -65.3 -66.8 -66.8 -65.1 -65.1 -66.4	(H/V)	3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -17.0 -14.7 -17.6 -15.7 -17.1 -15.3	37.4 36.7 37.4 36.7 37.3 37.3 36.7	1.0 1.0 1.0 1.0 1.0 1.0	-53.4 -50.4 -54.1 -51.4 -53.4 -53.4 -51.1	-13.0 -13.0 -13.0 -13.0 -13.0 -13.0	-40.4 -37.4 -41.1 -38.4 -40.4 -38.1	Notes
(GHz) Low Chann 3.69 5.61 3.69 5.61 Mid Chann 3.79 5.62 3.79	(dBm) nel (1860MHz) -65.0 -65.7 -65.3 -66.8 nel (1882.5MHz) -65.1 -66.4 -66.5	(H/V) Н Ч V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -17.0 -14.7 -15.7 -15.7 -17.1 -15.3 -18.6	37.4 36.7 37.4 36.7 37.3 36.7 37.3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-53.4 -50.4 -54.1 -51.4 -53.4 -51.1 -54.9	-13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	-40.4 -37.4 -41.1 -38.4 -40.4 -38.1 -41.9	Notes
(GHz) Low Chann 3.69 5.61 3.69 5.61 Mid Chann 3.79 5.62 3.79 5.62	(dBm) nel (1860MHz) -65.0 -65.7 -65.3 -66.8 -66.8 -66.1 -66.4 -66.5 -66.1	(H/V) H V V H H V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -17.0 -14.7 -17.6 -15.7 -17.1 -15.3	37.4 36.7 37.4 36.7 37.3 37.3 36.7	1.0 1.0 1.0 1.0 1.0 1.0	-53.4 -50.4 -54.1 -51.4 -53.4 -53.4 -51.1	-13.0 -13.0 -13.0 -13.0 -13.0 -13.0	-40.4 -37.4 -41.1 -38.4 -40.4 -38.1	Notes
(GHz) Low Chann 3.69 5.61 3.69 5.61 Mid Chann 3.79 5.62 3.79 5.62 High Chan	(dBm) nel (1860MHz) -65.0 -65.7 -65.3 -66.8 -66.8 -66.1 -66.4 -66.5 -66.1 -66.1 -005MHz)	(H/V) H V V H H V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -17.0 -14.7 -17.6 -15.7 -17.1 -15.3 -18.6 -15.0	37.4 36.7 37.4 36.7 37.3 36.7 37.3 36.7 37.3 36.7	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-53.4 -50.4 -54.1 -51.4 -53.4 -51.1 -54.9 -50.7	-13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	-40.4 -37.4 -41.1 -38.4 -40.4 -38.1 -41.9 -37.7	Notes
(GHz) Low Chann 3.69 5.61 3.69 5.61 Mid Chann 3.79 5.62 3.79 5.62	(dBm) nel (1860MHz) -65.0 -65.7 -65.3 -66.8 -66.8 -66.1 -66.4 -66.5 -66.1	(H/V) H V V H H V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -17.0 -14.7 -15.7 -15.7 -17.1 -15.3 -18.6	37.4 36.7 37.4 36.7 37.3 36.7 37.3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-53.4 -50.4 -54.1 -51.4 -53.4 -51.1 -54.9	-13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	-40.4 -37.4 -41.1 -38.4 -40.4 -38.1 -41.9	Notes

Page 919 of 929

16QAM EIRP POWER FOR LTE BAND 25 (20.0MHZ BANDWIDTH)

			-	titution Measu ated Chamber						
Company:										
Project #:		15U21635								
Date:		Sept. 8, 2015								
Test Engi	neer:	W. Chie								
Configura	tion:	EUT Only								
Mode:		LTE Band 25, 2	20MHz 16QAM							
r	Chambe	er		e-amplifer hamber H	Filte	Filter	ļ	EIRP	Limit	
	3m Chamber H		3m (3	hamber H 🚽						
		`				•	<u> </u>			<u> </u>
Frequen (GHz)	cy SA reading	Ant. Pol. (H/V)	Distance	EIRP @ TX Ant End (dBm)	Preamp	Attenuator	EIRP	Limit	Delta	Notes
(GHz)	cy SA reading	Ant. Pol. (H/V)		EIRP @ TX Ant End			EIRP		Delta	Notes
(GHz) Low Chanr 3.72	cy SA reading (dBm) rel (1860MHz) -64.4	(H/V) н	Distance	EIRP @ TX Ant End (dBm) -16.5	Preamp 37.4	Attenuator	-52.9	Limit	-39.9	Notes
(GHz) Low Chanr 3.72 5.61	cy SA reading (dBm) iel (1860MHz) -64.4 -66.2	(H/V) н н	Distance 3.0 3.0	EIRP @ TX Ant End (dBm) -16.5 -15.2	Preamp 37.4 36.7	Attenuator	-52.9 -50.9	Limit -13.0 -13.0	-39.9 -37.9	Notes
(GHz) Low Chanr 3.72 5.61 3.72	cy SA reading (dBm) hel (1860MHz) -64.4 -66.2 -65.2	(H/V) H H V	Distance	EIRP @ TX Ant End (dBm) -16.5 -15.2 -17.5	Preamp 37.4 36.7 37.4	Attenuator	-52.9 -50.9 -53.9	Limit -13.0 -13.0 -13.0	-39.9 -37.9 -40.9	Notes
(GHz) Low Chanr 3.72 5.61	cy SA reading (dBm) iel (1860MHz) -64.4 -66.2	(H/V) н н	Distance 3.0 3.0	EIRP @ TX Ant End (dBm) -16.5 -15.2	Preamp 37.4 36.7	Attenuator	-52.9 -50.9	Limit -13.0 -13.0	-39.9 -37.9	Notes
(GHz) Low Chanr 3.72 5.61 3.72 5.61 Mid Chann	cy SA reading (dBm) -64.4 -66.2 -65.2 -66.9 el (1882.5MHz)	(H/V) H H V V	Distance 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -16.5 -15.2 -17.5 -15.8	Preamp 37.4 36.7 37.4 36.7	Attenuator	-52.9 -50.9 -53.9 -51.5	Limit -13.0 -13.0 -13.0 -13.0	-39.9 -37.9 -40.9 -38.5	Notes
(GHz) Low Chanr 3.72 5.61 3.72 5.61 Mid Chann 3.75	cy SA reading (dBm) 1el (1860MHz) -64.4 -66.2 -65.2 -66.9 el (1882.5MHz) -64.8	(H/V) H H V V	Distance	EIRP @ TX Ant End (dBm) -16.5 -15.2 -17.5 -15.8 -15.8 -16.8	Preamp 37.4 36.7 37.4 36.7 37.4	Attenuator 1.0 1.0 1.0 1.0 1.0	-52.9 -50.9 -53.9 -51.5 -53.2	Limit -13.0 -13.0 -13.0 -13.0 -13.0	-39.9 -37.9 -40.9 -38.5 -40.2	Notes
(GHz) Low Chanr 3.72 5.61 3.72 5.61 Mid Chann 3.75 5.66	cy SA reading (dBm) 1el (1860MHz) -64.4 -66.2 -65.2 -66.9 el (1882.5MHz) -64.8 -66.0	(H/V) H V V H H	Distance 3.0 3.0 3.0 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -16.5 -15.2 -15.2 -15.8 -16.8 -14.9	Preamp 37.4 36.7 37.4 36.7 37.4 36.7	Attenuator 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-52.9 -50.9 -53.9 -51.5 -53.2 -50.6	Limit -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	-39.9 -37.9 -40.9 -38.5 -40.2 -37.6	Notes
(GHz) Low Chanr 3.72 5.61 3.72 5.61 Mid Chann 3.75	cy SA reading (dBm) 1el (1860MHz) -64.4 -66.2 -65.2 -66.9 el (1882.5MHz) -64.8	(H/V) H H V V	Distance	EIRP @ TX Ant End (dBm) -16.5 -15.2 -17.5 -15.8 -15.8 -16.8	Preamp 37.4 36.7 37.4 36.7 37.4	Attenuator 1.0 1.0 1.0 1.0 1.0	-52.9 -50.9 -53.9 -51.5 -53.2	Limit -13.0 -13.0 -13.0 -13.0 -13.0	-39.9 -37.9 -40.9 -38.5 -40.2	Notes
(GHz) Low Chanr 3.72 5.61 3.72 5.61 Mid Chann 3.75 5.66 3.75 5.66	cy SA reading (dBm) 1el (1860MHz) -64.4 -66.2 -65.2 -66.9 el (1882.5MHz) -64.8 -66.0 -65.2 -66.9	(H/V) H V V H H V	Distance 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -16.5 -15.2 -17.5 -15.8 - -16.8 -14.9 -17.4	Preamp 37.4 36.7 37.4 36.7 37.4 36.7 37.4	Attenuator 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-52.9 -50.9 -53.9 -51.5 -53.2 -50.6 -53.8	-13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	-39.9 -37.9 -40.9 -38.5 -40.2 -37.6 -40.8	Notes
(GHz) Low Chanr 3.72 5.61 3.72 5.61 Mid Chann 3.75 5.66 3.75 5.66 3.75 5.66	cy SA reading (dBm) -64.4 -66.2 -65.2 -66.9 -66.9 -66.9 -66.0 -65.2 -66.0 -65.2 -66.9 -65.2 -66.9 -65.2 -66.9 -65.2 -66.9 -65.2 -66.9 -65.2 -66.9 -65.2 -65.	(H/V) H V V H H V V V	Distance 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -16.5 -15.2 -17.5 -15.8 -16.8 -14.9 -17.4 -15.7	Preamp 37.4 36.7 37.4 36.7 37.4 36.7 37.4 36.7 37.4 36.7	Attenuator 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-52.9 -50.9 -53.9 -51.5 -53.2 -50.6 -53.8 -51.4	Limit -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	-39.9 -37.9 -40.9 -38.5 -40.2 -37.6 -40.8 -38.4	Notes
(GH2) Low Chanr 3.72 5.61 3.72 5.61 Mid Chann 3.75 5.66 3.75 5.66 3.75 5.66 High Chann 3.84	cy SA reading (dBm) 1el (1860MHz) -64.4 -66.2 -65.2 -66.9 el (1882.5MHz) -64.8 -66.0 -65.2 -66.9 -66.9 -66.9 -66.9 -66.9 -66.9 -65.2 -66.9	(H/V) H V V H H H H	Distance 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -16.5 -15.2 -17.5 -15.8 -16.8 -16.8 -14.9 -17.4 -15.7 -17.4 -15.7	Preamp 37.4 36.7 37.4 36.7 37.4 36.7 37.4 36.7 37.4 36.7 37.4 36.7 37.3	Attenuator 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-52.9 -50.9 -53.9 -51.5 -53.2 -50.6 -53.8 -51.4 -53.4	Limit -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	-39.9 -37.9 -40.9 -38.5 -40.2 -37.6 -40.8 -38.4 -40.8	Notes
(GHz) Low Chanr 3.72 5.61 3.72 5.61 Mid Chann 3.75 5.66 3.75 5.66 3.75 5.66	cy SA reading (dBm) -64.4 -66.2 -65.2 -66.9 -66.9 -66.9 -66.0 -65.2 -66.0 -65.2 -66.9 -65.2 -66.9 -65.2 -66.9 -65.2 -66.9 -65.2 -66.9 -65.2 -66.9 -65.2 -65.	(H/V) H V V H H V V V	Distance 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	EIRP @ TX Ant End (dBm) -16.5 -15.2 -17.5 -15.8 -16.8 -14.9 -17.4 -15.7	Preamp 37.4 36.7 37.4 36.7 37.4 36.7 37.4 36.7 37.4 36.7	Attenuator 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-52.9 -50.9 -53.9 -51.5 -53.2 -50.6 -53.8 -51.4	Limit -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	-39.9 -37.9 -40.9 -38.5 -40.2 -37.6 -40.8 -38.4	Notes

Page 920 of 929

9.5.8. LTE BAND 26

QPSK EIRP POWER FOR LTE BAND 26 (10.0MHZ BANDWIDTH)

			-	stitution Measu						
Company:										
Project #:		15U21635								
Date:		Sept. 8, 2015								
Test Enginee	er:	W. Chie								
Configuratio	n:	EUT Only								
Mode:		LTE Band 26 (90S), 10MHz (QPSK						
	<u>ent:</u> : Horn T59 Sub	ostitution, an					1			_1
Substitution:	: Horn T59 Sub Chambe		Pi	re-amplifer		Filter			Limit	
Substitution	: Horn T59 Sub		Pi		Filter		•	EIRP	Limit	•
	: Horn T59 Sub Chambe n Chamber H		Pi	re-amplifer Chamber H v EIRP @ TX	Filter		EIRP		Limit	• Notes
Substitution: 3n Frequency	: Horn T59 Sut Chambe n Chamber H SA reading (dBm)	er v Ant. Pol.	Pr 3m C	re-amplifer Chamber H v EIRP @ TX Ant End				EIRP		

Page 921 of 929

16QAM EIRP POWER FOR LTE BAND 26 (10.0MHZ BANDWIDTH)

		High Freq	uency Subsi	titution Meas	urement					
		UL Fr	emont Radia	ated Chambe	r					
Company:										
Project #:		15U21635								
Date:		Sept. 8, 2015								
Test Engine	er:	W. Chie								
Configuratio	n:	EUT Only								
Mode:		LTE Band 26 (9	90S), 10MHz 16	QAM						
	: Horn T59 Sub				1					
		ər	Pre	ble e-amplifer hamber H 🖵	Filte	Filter	-	EIRP	Limit	Ţ
Substitution	: Horn T59 Sub Chambe		Pre	e-amplifer	Filte		•	EIRP		•
Substitution	: Horn T59 Sub Chambe m Chamber H	ər	Pre	e-amplifer	Filte		EIRP	EIRP		• Notes
Substitution 3r Frequency (GHz) Mid Channel (: Horn T59 Sut Chamber m Chamber H SA reading (dBm) (819MHz)	Ant. Pol. (H/V)	Pre 3m Cl Distance	e-amplifer hamber H EIRP @ TX Ant End (dBm)	Preamp	r Attenuator	EIRP	Limit	Delta	
Substitution 3r Frequency (GHz) <u>Mid Channel (</u> 1.63	: Horn T59 Sub Chamber m Chamber H SA reading (dBm) -81.6	Ant. Pol. (H/V)	Pre 3m Cl Distance	e-amplifer hamber H EIRP @ TX Ant End (dBm) -41.3	Preamp	r Attenuator	EIRP -78.1	Limit	Delta -65.1	
Substitution 3r Frequency (GHz) Mid Channel (: Horn T59 Sut Chamber m Chamber H SA reading (dBm) (819MHz)	Ant. Pol. (H/V)	Pre 3m Cl Distance	e-amplifer hamber H EIRP @ TX Ant End (dBm)	Preamp	r Attenuator	EIRP	Limit	Delta	

Page 922 of 929

9.5.9. LTE BAND 41

QPSK EIRP POWER FOR LTE BAND 41 (20.0MHZ BANDWIDTH)

			-	titution Meas						
		ULII	emont itau		-1					
Company:										
Project #:		15U21635								
Date:		Sept. 9, 2015								
Test Engi		W. Chie								
Configura		EUT Only								
Mode:		LTE Band 41, 2	20MHz QPSK							
Test Equi	oment:									
	on: Horn T59 Sub	stitution an	d 8ft SMA Ca	hle						
Jubstituti		Sitution, an								
	Chamb	er	Pr	e-amplifer		Filter			Limit	
- r	0		2m (hamber H 💂	Filte		-	LTE	44	
	3m Chamber H	•	3m C		Fiite	r	•	LIEE	641	•
-								-		
	1		1	1		1				1
				EIRP @ TX						
				AntEnd	Dreeman	Attenuator	EIRP	Limit	Delta	Notes
Frequend	cy SA reading	Ant. Pol.	Distance	Ant End	Preamp	Altenuator		Luur		
Frequenc (GHz)	cy SA reading (dBm)	Ant. Pol. (H/V)	Distance	(dBm)	Preamp	Allendator		Linit		
(GHz) Low Chann	(dBm) el (2506MHz)	(H/V)		(dBm)	·					
(GHz) Low Chann 5.05	(dBm) el (2506MHz) -68.2	(H/V) н	3.0	(dBm) -18.1	36.9	1.0	-54.0	-25.0	-29.0	
(GHz) Low Chann 5.05 7.49	(dBm) el (2506MHz) -68.2 -64.2	(H/V) н н	3.0 3.0	(dBm) -18.1 -10.4	36.9 35.9	1.0 1.0	-54.0 -45.3	-25.0 -25.0	-29.0 -20.3	
(GHz) Low Chann 5.05 7.49 5.05	(dBm) el (2506MHz) -68.2 -64.2 -67.1	(H/V) H H V	3.0 3.0 3.0	(dBm) -18.1 -10.4 -16.9	36.9 35.9 36.9	1.0 1.0 1.0	-54.0 -45.3 -52.7	-25.0 -25.0 -25.0	-29.0 -20.3 -27.7	
(GHz) Low Chann 5.05 7.49	(dBm) el (2506MHz) -68.2 -64.2	(H/V) н н	3.0 3.0	(dBm) -18.1 -10.4	36.9 35.9	1.0 1.0	-54.0 -45.3	-25.0 -25.0	-29.0 -20.3	
(GHz) Low Chann 5.05 7.49 5.05 7.49	(dBm) el (2506MHz) -68.2 -64.2 -67.1	(H/V) H H V	3.0 3.0 3.0	(dBm) -18.1 -10.4 -16.9	36.9 35.9 36.9	1.0 1.0 1.0	-54.0 -45.3 -52.7	-25.0 -25.0 -25.0	-29.0 -20.3 -27.7	
(GHz) Low Chann 5.05 7.49 5.05 7.49 Vid Channe 5.17	(dBm) el (2506MHz) -68.2 -64.2 -67.1 -63.8 el (2593MHz) -64.2	(H/V) H H V V	3.0 3.0 3.0 3.0 3.0 3.0	(dBm) -18.1 -10.4 -16.9 -10.2 -13.9	36.9 35.9 36.9 35.9 35.9	1.0 1.0 1.0 1.0 1.0	-54.0 -45.3 -52.7 -45.2 -49.7	-25.0 -25.0 -25.0 -25.0 -25.0	-29.0 -20.3 -27.7 -20.2 -24.7	
(GHz) Low Chann 5.05 7.49 5.05 7.49 Mid Channe 5.17 7.75	(dBm) el (2506MHz) -68.2 -64.2 -67.1 -63.8 el (2593MHz) -64.2 -63.9	(H/V) H V V H H	3.0 3.0 3.0 3.0 3.0 3.0 3.0	(dBm) -18.1 -10.4 -16.9 -10.2 -13.9 -9.8	36.9 35.9 36.9 35.9 36.8 36.8 35.7	1.0 1.0 1.0 1.0 1.0 1.0	-54.0 -45.3 -52.7 -45.2 -49.7 -49.7 -44.5	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-29.0 -20.3 -27.7 -20.2 -24.7 -19.5	
(GHz) Low Chann 5.05 7.49 5.05 7.49 Mid Channe 5.17 7.75 5.17	(dBm) el (2506MHz) -68.2 -64.2 -67.1 -63.8 el (2593MHz) -64.2 -63.9 -63.6	(H/V) H V V H H V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	(dBm) -18.1 -10.4 -16.9 -10.2 -13.9 -9.8 -13.1	36.9 35.9 36.9 35.9 36.8 35.7 36.8	1.0 1.0 1.0 1.0 1.0 1.0 1.0	-54.0 -45.3 -52.7 -45.2 -49.7 -44.5 -49.0	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-29.0 -20.3 -27.7 -20.2 -24.7 -19.5 -24.0	
(GHz) Low Chann 5.05 7.49 5.05 7.49 Mid Channe 5.17 7.75	(dBm) el (2506MHz) -68.2 -64.2 -67.1 -63.8 el (2593MHz) -64.2 -63.9	(H/V) H V V H H	3.0 3.0 3.0 3.0 3.0 3.0 3.0	(dBm) -18.1 -10.4 -16.9 -10.2 -13.9 -9.8	36.9 35.9 36.9 35.9 36.8 36.8 35.7	1.0 1.0 1.0 1.0 1.0 1.0	-54.0 -45.3 -52.7 -45.2 -49.7 -49.7 -44.5	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-29.0 -20.3 -27.7 -20.2 -24.7 -19.5	
(GHz) Low Chann 5.05 7.49 5.05 7.49 Mid Channe 5.17 7.75 5.17 7.75	(dBm) el (2506MHz) -68.2 -64.2 -67.1 -63.8 el (2593MHz) -64.2 -63.9 -63.6	(H/V) H V V H H V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	(dBm) -18.1 -10.4 -16.9 -10.2 -13.9 -9.8 -13.1	36.9 35.9 36.9 35.9 36.8 35.7 36.8	1.0 1.0 1.0 1.0 1.0 1.0 1.0	-54.0 -45.3 -52.7 -45.2 -49.7 -44.5 -49.0	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-29.0 -20.3 -27.7 -20.2 -24.7 -19.5 -24.0	
(GHz) -ow Chann 5.05 7.49 5.05 7.49 Mid Channe 5.17 7.75 5.17 7.75	(dBm) el (2506MHz) -68.2 -64.2 -67.1 -63.8 el (2593MHz) -64.2 -63.9 -63.6 -63.4	(H/V) H V V H H V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	(dBm) -18.1 -10.4 -16.9 -10.2 -13.9 -9.8 -13.1	36.9 35.9 36.9 35.9 36.8 35.7 36.8	1.0 1.0 1.0 1.0 1.0 1.0 1.0	-54.0 -45.3 -52.7 -45.2 -49.7 -44.5 -49.0	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-29.0 -20.3 -27.7 -20.2 -24.7 -19.5 -24.0	
(GHz) Low Chann 5.05 7.49 5.05 7.49 Mid Channe 5.17 7.75 5.17 7.75 High Channe 5.34 8.02	(dBm) el (2506MHz) -66.2 -64.2 -67.1 -63.8 el (2593MHz) -64.2 -63.9 -63.6 -63.6 -63.4 el (2680MHz) -64.9 -61.2	(H/V) H V V V H H V V H H H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	(dBm) -18.1 -10.4 -16.9 -10.2 -13.9 -9.8 -13.1 -9.5 -9.5 -14.3 -6.8	36.9 35.9 35.9 35.9 36.8 35.7 36.8 35.7 36.8 35.7 36.8 35.7	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-54.0 -45.3 -52.7 -45.2 -49.7 -44.5 -49.0 -44.3 -50.1 -41.3	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-29.0 -20.3 -27.7 -20.2 -24.7 -19.5 -24.0 -19.3 -19.3 -25.1 -16.3	
(GHz) Low Chann 5.05 7.49 5.05 7.49 Mid Channe 5.17 7.75 5.17 7.75 5.17 7.75	(dBm) el (2506MHz) -68.2 -64.2 -67.1 -63.8 el (2593MHz) -64.2 -63.9 -63.6 -63.4 el (2680MHz) -64.9	(H/V) H V V H H H H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	(dBm) -18.1 -10.4 -16.9 -10.2 -13.9 -3.8 -13.1 -9.5 -14.3	36.9 35.9 36.9 35.9 36.8 35.7 36.8 35.7 36.8 35.7 36.8	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-54.0 -45.3 -52.7 -45.2 -49.7 -44.5 -49.0 -44.3 -50.1	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-29.0 -20.3 -27.7 -20.2 -24.7 -19.5 -24.0 -19.3 -25.1	

Page 923 of 929

16QAM EIRP POWER FOR LTE BAND 41 (20.0MHZ BANDWIDTH)

			-	titution Measu ated Chambe						
Company	:									
Project #:		15U21635								
Date:		Sept. 9, 2015								
Test Engi	neer:	W. Chie								
Configura	ation:	EUT Only								
Mode:		LTE Band 41,	20MHz 16QAN	1						
Substituti	ion: Horn T59 Sub Chambe			ble -amplifer		Filter			_imit	
F	3m Chamber H		3m Cl	namber H	Filter	•		LTE B4	1	_
	Sinchampern	•							•	
	3		1			1				3
-		Ant. Pol. (H/V)	Distance	EIRP @ TX Ant End (dBm)	Preamp	Attenuator	EIRP	Limit	Delta	Notes
(GHz)		Ant. Pol. (H/V)	Distance		Preamp	Attenuator	EIRP	Limit	Delta	Notes
(GHz) Low Chan 5.00	(dBm) nel (2506MHz) -66.1	(H/V) H	3.0	Ant End (dBm) -16.1	36.9	1.0	-52.0	-25.0	-27.0	Notes
Low Chani 5.00 7.46	(dBm) nel (2506MHz) -66.1 -66.2	(H/V) н н	3.0 3.0	Ant End (dBm) -16.1 -12.4	36.9 36.0	1.0 1.0	-52.0 -47.4	-25.0 -25.0	-27.0 -22.4	Notes
(GHz) Low Chan 5.00 7.46 5.00	(dBm) nel (2506MHz) -66.1 -66.2 -65.7	(H/V) н н V	3.0 3.0 3.0	Ant End (dBm) -16.1 -12.4 -15.5	36.9 36.0 36.9	1.0 1.0 1.0	-52.0 -47.4 -51.4	-25.0 -25.0 -25.0	-27.0 -22.4 -26.4	Notes
(GHz) Low Chan 5.00 7.46	(dBm) nel (2506MHz) -66.1 -66.2	(H/V) н н	3.0 3.0	Ant End (dBm) -16.1 -12.4	36.9 36.0	1.0 1.0	-52.0 -47.4	-25.0 -25.0	-27.0 -22.4	Notes
(GHz) Low Chan 5.00 7.46 5.00 7.46 Mid Chann	(dBm) nel (2506MHz) -66.1 -66.2 -65.7 -65.6 el (2593MHz)	(H/V) н н v v	3.0 3.0 3.0 3.0	Ant End (dBm) -16.1 -12.4 -15.5 -12.1	36.9 36.0 36.9 36.0	1.0 1.0 1.0 1.0	-52.0 -47.4 -51.4 -47.0	-25.0 -25.0 -25.0 -25.0	-27.0 -22.4 -26.4 -22.0	Notes
(GHz) Low Chann 5.00 7.46 5.00 7.46 Mid Chann 5.17	(dBm) nel (2506MHz) -66.1 -66.2 -65.7 -65.6 el (2593MHz) -63.5	<u>(</u> H/V) Н V V	3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -16.1 -12.4 -15.5 -12.1 -13.2	36.9 36.0 36.9 36.0 36.0	1.0 1.0 1.0 1.0 1.0	-52.0 -47.4 -51.4 -47.0 -49.0	-25.0 -25.0 -25.0 -25.0 -25.0	-27.0 -22.4 -26.4 -22.0 -24.0	Notes
(GHz) Low Chann 5.00 7.46 5.00 7.46 Mid Chann 5.17 7.75	(dBm) hel (2506MHz) -66.1 -66.2 -65.7 -65.6 el (2593MHz) -63.5 -63.5 -62.1	<u>(H/V)</u> н ч v v	3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -16.1 -12.4 -15.5 -12.1 -13.2 -8.0	36.9 36.0 36.9 36.0 36.8 35.7	1.0 1.0 1.0 1.0 1.0 1.0	-52.0 -47.4 -51.4 -47.0 -49.0 -49.0	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-27.0 -22.4 -26.4 -22.0 -24.0 -17.7	Notes
(GHz) Low Chann 5.00 7.46 5.00 7.46 Mid Chann 5.17	(dBm) nel (2506MHz) -66.1 -66.2 -65.7 -65.6 el (2593MHz) -63.5	<u>(</u> H/V) Н V V	3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -16.1 -12.4 -15.5 -12.1 -13.2	36.9 36.0 36.9 36.0 36.0	1.0 1.0 1.0 1.0 1.0	-52.0 -47.4 -51.4 -47.0 -49.0	-25.0 -25.0 -25.0 -25.0 -25.0	-27.0 -22.4 -26.4 -22.0 -24.0	Notes
(GHz) Low Chann 5.00 7.46 5.00 7.46 Mid Chann 5.17 7.75 5.17 7.75	(dBm) hel (2506MHz) -66.1 -66.2 -65.7 -65.6 el (2593MHz) -63.5 -62.1 -63.0 -61.7	(H/V) H V V V H H V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -16.1 -12.4 -15.5 -12.1 -13.2 -13.2 -8.0 -12.5	36.9 36.0 36.9 36.0 36.0 36.8 35.7 36.8	1.0 1.0 1.0 1.0 1.0 1.0 1.0	-52.0 -47.4 -51.4 -47.0 -49.0 -49.0 -42.7 -48.4	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-27.0 -22.4 -26.4 -22.0 -24.0 -17.7 -23.4	Notes
(GHz) Low Chann 5.00 7.46 5.00 7.46 0.00 7.46 Mid Chann 5.17 7.75 5.17 7.75 High Chan	(dBm) hel (2506MHz) -66.1 -66.2 -65.7 -65.6 el (2593MHz) -63.5 -62.1 -63.0 -61.7 -63.0 -61.7 -61.7 -63.0 -61.7 -63.0 -	(H/V) H V V H H V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -16.1 -12.4 -15.5 -12.1 -13.2 -13.2 -8.0 -12.5 -7.9	36.9 36.0 36.9 36.0 36.8 35.7 36.8 35.7 36.8 35.7	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-52.0 -47.4 -51.4 -47.0 -49.0 -42.7 -48.4 -42.6	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-27.0 -22.4 -26.4 -22.0 -24.0 -17.7 -23.4 -17.6	Notes
(GHz) Low Chann 5.00 7.46 5.00 7.46 Mid Chann 5.17 7.75 5.17 7.75 5.17 7.75 High Chan 5.34	(dBm) -66.1 -66.2 -65.7 -65.6 el (2593MHz) -63.5 -62.1 -63.0 -61.7 -61.7 -61.7 -61.9 -61.9	(H/V) H V V H H H H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -16.1 -12.4 -15.5 -12.1 -13.2 -8.0 -12.5 -7.9 -16.3	36.9 36.0 36.9 36.0 36.8 35.7 36.8 35.7 36.8 35.7 36.8	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-52.0 -47.4 -51.4 -47.0 -49.0 -42.7 -48.4 -42.6 -52.1	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-27.0 -22.4 -26.4 -22.0 -24.0 -17.7 -23.4 -17.6	Notes
(GHz) Low Chann 5.00 7.46 5.00 7.46 Mid Chann 5.17 7.75 5.17 7.75 5.17 7.75	(dBm) hel (2506MHz) -66.1 -66.2 -65.7 -65.6 el (2593MHz) -63.5 -62.1 -63.0 -61.7 -63.0 -61.7 -61.7 -63.0 -61.7 -63.0 -	(H/V) H V V H H V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant End (dBm) -16.1 -12.4 -15.5 -12.1 -13.2 -13.2 -8.0 -12.5 -7.9	36.9 36.0 36.9 36.0 36.8 35.7 36.8 35.7 36.8 35.7	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-52.0 -47.4 -51.4 -47.0 -49.0 -42.7 -48.4 -42.6	-25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	-27.0 -22.4 -26.4 -22.0 -24.0 -17.7 -23.4 -17.6	Notes

Page 924 of 929